Режа: Минимал нархли дарахтлар склети


Танланган тугунлар тўплами



Download 266,43 Kb.
bet2/2
Sana21.02.2022
Hajmi266,43 Kb.
#60376
1   2
Bog'liq
6-maruza

Танланган тугунлар тўплами

(u,v) қирра

V/U
танланмаган тугунлар тўплами

Изоҳ



{ }




{A,B,C,D,E,F,G}

Бошланғич граф





{D}

(D,A)=5 V
(D,B) = 9
(D,E)= 15
(D,F) = 6

{A,B,C,E,F,G}

D тугундан бошлаймиз ABE и F лар D билан боқланган. A тугун — D га энг яқин бўлганлиги учун шу тугун олинади.



{A,D}

(D,B) = 9
(D,E)= 15
(D,F) = 6 
(A,B) = 7 V

{B,C,E,F,G}

D ёки A га энг яқин бўлган тугунни топамиз. B - D 9, A —D 7. E гача масофа 15, F —гача 6. F энг яқин тугун.



{A,B,D,F}

(B,C) = 8
(B,E)=7 V 
(D,B) = 9 цикл
(D,E)= 15
(F,E) = 8
(F,G)= 11

{C,E,G}






{A,B,D,E,F}

(B,C) = 8
(D,B) = 9 цикл
(D,E) = 15 цикл
(E,C) = 5 V
(E,G) = 9
(F,E) = 8 цикл
(F,G) = 11

{C,G}






{A,B,C,D,E,F}

(B,C) = 8 цикл
(D,B) = 9 цикл
(D,E) = 15 цикл
(E,G) = 9 V
(F,E) = 8 цикл
(F,G) = 11

{G}






{A,B,C,D,E,F,G}

(B,C) = 8 цикл
(D,B) = 9 цикл
(D,E) = 15 цикл
(F,E) = 8 цикл
(F,G) = 11 цикл

{ }

Минимал нархли дарахтлар склети қурилди. Бунда оғирлиги 39 бўлди.

Қуйида Прим алгоритми келтирилган.
1-дастур. Прим алгоритми
procedure Prim ( G: граф; var T: қирралар тўплами );
var
U: қирралар тўплами;
u, v: қирра;
begin
T:= ø;
U:= {1};
while U ≠ V do begin
энг кам нархли ва uU ва vV\U бўлган (u, v) қиррани топиш;
Т:= Т{u, V));
U:= U{v}
end
end; { Prim }


Юқоридаги граф учун қўшнилик матрицаси
A B C D E F G
0 7 0 5 0 0 0
7 0 8 9 7 0 0
0 8 0 0 5 0 0
5 9 0 0 15 6 0
0 7 5 15 0 8 9
0 0 0 6 8 0 11
0 0 0 0 9 11 0


Дастур
#include
using namespace std;
int main()
{
int a,b,u,v,n,i,j,ne=1;
int visited[10]={0}, min, mincost=0,cost[10][10];
int path[100]={0}; //ushbu massivda yulni tashkil qiladigan tugunlar yoziladi
int path_index=0;
cout<<"Tugunlar sonini kiriting "; cin>>n;
cout<<"Qushnilik matritsasini kiriting\n";
for(i=0;i for(j=0;j {
cin>>cost[i][j];
if(cost[i][j]==0)
cost[i][j]=999; // 999 - это что-типа бесконечности. Должно быть больше чем значения веса каждого из ребер в графе
}
visited[0]=1;
cout<<"\n";
while(ne < n)
{
for(i=0, min=999; i for(j=0;j if(cost[i][j]< min)
if(visited[i]!=0)
{
min=cost[i][j];
a=u=i;
b=v=j;
}
if(visited[u]==0 || visited[v]==0)
{
path[path_index]=b;
path_index++;
ne++;
mincost+=min;
visited[b]=1;
}
cost[a][b]=cost[b][a]=999;
}
cout<<"\n";
cout<<1<<" --> ";
for (int i=0;i {
cout<
if (i ";
}
cout<<"\n Minimal narx "<return 0;
}

Алгоритмни баҳолаш



,
Ёмон ҳолатда - .
Краскал алгоритми.
Ушбу алгоритм 1956 йили Краскал томонидан ишлаб чикилган.
Фараз қиламиз, V = {1, 2, .... n} бўғимлар тўпламидан иборат ва Е қирралар тўпламида аниқланган с нарх функцияси билан берилган G=(V, Е) боғланган граф бўлсин. Крускал алгоритмида G граф учун минимал нархли дарахтлар склетини қуриш G графнинг фақат n та бўғимларидан ташкил топган ва қирралари бўлмаган Т=(V, ø) графдан бошланади. Шундай қилиб, ҳар бир бўғим боғланган (ўзи-ўзи билан) компонент ҳисобланади. Алгоритм бажарилиши вақтида боғланган компонентлар наборига эга бўламиз, аста-секин бирлаштириб дарахтлар склетини ташкиллаштирамиз.
Аста-секин ўсувчи боғланган компонентларни қуришда Е тўпламдан қирралар уларнинг нархи ўсиши тартибида навбатма-навбат текширилади. Агар навбатдаги қирра турли компонентлардаги иккита бўғимни бирлаштирса, у ҳолда бу қирра Т графга қўшилади. Агар бу қирра битта компонентнинг иккита бўғимини бирлаштирса, у ташлаб юборилади, чунки унинг боғланган компонентга қўшилиши цикл ҳосил бўлишига олиб келади. G графнинг барча бўғимлари битта компонентга тегишли бўлса, Т минимал нархли дарахтлар склетини қуриш бу граф учун тугайди.
Мисол













С боғланган компонентлар тўплами керак, бу учун қуйидаги операторлар ишлатилади:


1. MERGE(A, В, С) оператори С набордан А ва В боғланган компонентларни бирлаштиради ва натижани А ёки В га жойлаштиради.
2. FIND(v, С) функцияси С набордан v бўғимни ўз ичига олган компонентнинг номини қайтаради.
3. INITIAL(A, v, С) оператори наборда фақат v бўғимдан иборат А номли компонентни яратади.
Ушбу алгоритм O (M log N + N2) вақтда бажарилади. Қирраларни саралаш учун О(M logN) та операция керак булади. Тугун у ёки бу қисм дарахтга тегишли бўлса, tree_id массив ёрдамида сақланади, бу массивда ҳар бир тугун учун у тегишли бўлган дарахт номери сақланади. Ҳар бир қирра учун О(1) вақтда унинг тугунлари турли дарахтларга тегишли эканлигини аниқланади. Ниҳоят, иккита дарахтни бирлаштириш O (N) вақтда бажарилади. Бирлаштириш оператори O(N) ўтишда бажарилишини ҳисобга олсак, O (M log N + N2) келиб чикади.
Дастур кўриниши қуйидагича булади:
int n, m;
cin >> n >> m;
vector > edges(m, vector(3));
for (int i = 0; i < m; ++i)
cin >> edges[i][1] >> edges[i][2] >> edges[i][0];
sort(edges.begin(), edges.end());
vector comp(n);
for (int i = 0; i < n; ++i)
comp[i] = i;
int ans = 0;
for (auto & edge: edges)
{
int weight = edge[0];
int start = edge[1];
int end = edge[2];
if (comp[start] != comp[end])
{
ans += weight;
int a = comp[start];
int b = comp[end];
for (int i = 0; i < n; ++i)
if (comp[i] == b)
comp[i] = a;
}
}

// Dijkstra algoritmi.
#include
using namespace std;
// Graf uchlari soni
#define V 9

int shortest_path(int dist[], int n)


{
cout<<"Uchlar "<<"\t"<<"Masofa\n";
for (int i = 0; i < V; i++)
cout<<" \t\t \n"<< i<<" \t\t "<}
// minimal masofani hisoblash
int minDist(int dist[], bool Set[])
{
int min = INT_MAX, min_index;
for (int i = 0; i < V; i++)
if (Set[i] == false && dist[i] <= min)
min = dist[i], min_index = i;
return min_index;
}
// Boshqa uchlargacha eng qisqa yo'llarni aniqlash
void Dijkstra(int g[V][V], int src)
{
int dist[V];
bool Set[V];
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, Set[i] = false;
dist[src] = 0;
for (int c = 0; c < V- 1; c++)
{
int u = minDist(dist, Set);
Set[u] = true;
for (int j = 0; j < V; j++)
if (!Set[j] && g[u][j] && dist[u] != INT_MAX && dist[u]+ g[u][j] < dist[j])
{
dist[j] = dist[u] + g[u][j];
}
}
shortest_path(dist, V);
}
// asosiy funksiya
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int G[V][V] = {
{ 0, 4, 0, 0, 0, 0, 0, 8, 0 },
{ 4, 0, 8, 0, 0, 0, 0, 11, 0 },
{ 0, 8, 0, 7, 0, 4, 0, 0, 2 },
{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },
{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
{ 0, 0, 4, 14, 10, 0, 2, 0, 0 },
{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },
{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },
{ 0, 0, 2, 0, 0, 0, 6, 7, 0 }};
Dijkstra(G, 0);
return 0;
}

Download 266,43 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish