Реферат «Полное исследование функции и построение её графика»



Download 53,41 Kb.
bet1/5
Sana23.02.2022
Hajmi53,41 Kb.
#136823
TuriРеферат
  1   2   3   4   5



РЕФЕРАТ
«Полное исследование функции и построение её графика».


ВВЕДЕНИЕ

Изучение свойств функции и построение ее графика являются одним из самых замечательных приложений производной. Этот способ исследования функции неоднократно подвергался тщательному анализу. Основная причина состоит в том, что в приложениях математики приходилось иметь дело с более и более сложными функциями, появляющимися при изучении новых явлений. Появились исключения из разработанных математикой правил, появились случаи, когда вообще созданные правила не годились, появились функции, не имеющие ни в одной точке производной.


Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций.
Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает старшеклассникам получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.

  1. Возрастание и убывание функции

Решение различных задач из области математики, физики и техники приводит к установлению функциональной зависимости между участвующими в данном явлении переменными величинами.


Если такую функциональную зависимость можно выразить аналитически, то есть в виде одной или нескольких формул, то появляется возможность исследовать ее средствами математического анализа.
Имеется в виду возможность выяснения поведения функции при изменении той или иной переменной величины (где функция возрастает, где убывает, где достигает максимума и т.д.).
Применение дифференциального исчисления к исследованию функции опирается на весьма простую связь, существующую между поведением функции и свойствами ее производной, прежде всего ее первой и второй производной.
Рассмотрим, как можно находить интервалы возрастания или убывания функции, то есть интервалы ее монотонности. Исходя из определения монотонно убывающей и возрастающей функции, можно сформулировать теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности.
Теорема 1.1. Если функция y = f(x), дифференцируемая на интервале (a,b), монотонно возрастает на этом интервале, то в любой его точке
(x ) >0; если она монотонно убывает, то в любой точке интервала (x)<0.
Доказательство. Пусть функция y = f(x) монотонно возрастает на (a,b), значит, для любого достаточно малого > 0 выполняется неравенство:
f (x- ) < f (x) < f (x+ ) (рис. 1.1).



Рис. 1.1
Рассмотрим предел
.
Если > 0, то > 0, если < 0, то
< 0.
В обоих случаях выражение под знаком предела положительно, значит, и предел положителен, то есть (x )>0, что и требовалось доказать. Аналогично доказывается и вторая часть теоремы, связанная с монотонным убыванием функции.
Теорема 1.2. Если функция y = f(x), непрерывна на отрезке [a,b]и дифференцируема во всех его внутренних точках, и, кроме того, (x ) >0 для любого x ϵ (a,b), то данная функция монотонно возрастает на (a,b); если
(x ) <0 для любого xϵ (a,b), то данная функция монотонно убывает на (a,b).
Доказательство. Возьмем ϵ (a,b) и ϵ (a,b), причем < . По теореме Лагранжа
(c) = .
Но (c)>0 и > 0, значит, ( > 0, то есть
( . Полученный результат указывает на монотонное возрастание функции, что и требовалось доказать. Аналогично доказывается вторая часть теоремы.


  1. Download 53,41 Kb.

    Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish