Химический состав и свойства стекла
К стеклообразующим веществам относятся:
Оксиды:O3O5
Фториды:
и др.
Карбонат кальция, подобно соде, при сплавлении с песком взаимодействует с ним, образуя силикат кальция и двуокись углерода. При сплавлении с избытком песка смеси карбонатов натрия и кальция получают переохлажденный взаимный раствор полисиликатов кальция и натрия; это и есть обыкновенное оконное стекло. Главное свойство всякого стекла заключается в том, что оно переходит из жидкого в твердое состояние не скачком, а загустевает по мере остывания постепенно вплоть до полного затвердевания. Стекло - аморфное вещество. Аморфные вещества отличаются от кристаллических тем, что атомы в них не образуют кристаллической решетки. Однако известная упорядоченность расположения атомов существует и в стеклах. Для плавленого кварца и силикатных стекол остаются в силе общие законы кристаллохимии силикатов; каждый атом кремния в них тетраэдрически окружен четырьмя атомами кислорода, но эти тетраэдры сочетаются друг с другом беспорядочно, образуя непрерывную пространственную сетку, в пустотах которой тоже беспорядочно располагаются ионы металлов (рис). Благодаря этому один «микроучасток» стекольной массы отличен по атомному строению от другого, соседствующего с ним. Этим и объясняется отсутствие у стекла постоянной точки плавления, постепенность перехода его из твердого в жидкое состояние и обратно.
Как материал стекло широко используется в различии областях народного хозяйства, В соответствии с назначением известны разнообразные виды стекла:оконное посудное, тарное, химико-лабораторное, термическое, жаростойкое, строительное, оптическое, электровакуумное и многочисленные другие вид стекла технического. В пределах каждого вид стекла имеются самые разнообразные его сорта. В зависимости от условий службы каждого вида и сорта стеклу предъявляются определённые требования в отношении свойств, сформулированные в соответствующих стандартах и технических условиях. Физико-химические свойства стекла определяются главным образом его составом.
В состав стекла входят различные окислы:Si02l Na20, CaO, MgO, B2O3, Al2O3 и др. Среди видов неорганических стекол (боросиликатные, боратные и др.) особенно большая роль в практике принадлежит стеклам, сплавленным на основе кремнезема, - силикатным стеклам. Вводя в состав стекла определенные окислы, получают стекла с заранее заданными физико-химическими свойствами. Наиболее простой состав имеет стекло, полученное расплавлением чистого кремнезема до образования стекловидной массы. Из такого стекла обычно изготовляют так называемую кварцевую посуду, которая обладает большой термической и химической стойкостью.
Свойства стекла зависят от входящих компонентов и их соотношений в сплаве. К наиболее важным качествам стекла относится его химическая стойкость.
Химическая устойчивость характеризует сопротивляемость стекол разрушающему действию агрессивных сред. На стекло воздействуют различные химические агенты, растворяя его составные части и вызывая коррозию. Одним из самых вредных для стекла веществ является вода, переводящая силикаты в щелочи и создающая благодаря этому затруднения при изготовлении многих инъекционных растворов. Способность воды растворять отдельные составные части стекла начинает проявляться уже в первые минуты контакта водного раствора со стеклом даже при комнатной температуре и усиливается при хранении. Стерилизация оказывает очень сильное влияние и сдвиг рН.
Явления, происходящие в результате воздействия различных водных растворов - на стекло ампул, станут понятными, если учесть, что поверхностный слой стекла всегда насыщен ионами щелочных и щелочноземельных металлов 'благодаря их высокой подвижности (и небольшому заряду по сравнению с высоким зарядом четырехвалентного иона кремния). По этой причине ион натрия даже при комнатной температуре может замешаться другими ионами. Ионы щелочных металлов легко перемещаются из внутренних слоев стекла на место ионов, вступивших в реакцию.
При воздействии на стекло растворов кислот происходит нейтрализация щелочи, причем если раствор содержит относительно много кислоты (рН 3,0 и ниже), то выщелачивание поверхности стекла происходит без заметного изменения концентрации водородных ионов. Если же на стекло действуют растворы с рН выше 3,0 и вода, то реакция нейтрализации весьма заметно отражается на концентрации водородных ионов и рН резко возрастает. При воздействии растворов кислот и воды реакции выщелачивания сопровождаются образованием на поверхности стекла гидратной кремнеземистой пленки, обогащенной щелочноземельными компонентами стекла. Толщина этой пленки постепенно увеличивается, что затрудняет выход щелочных металлов из внутренних слоев стекла. В связи с этим процесс выщелачивания, начавшийся вначале быстро, постепенно затухает, что видно из кривых, которые, достигнув максимума, далее идут параллельно оси абсцисс.
По-другому протекает воздействие щелочных растворов на поверхность стекла. Вначале они не образуют пленок, а растворяют и смывают поверхностный слой, разрывая при этом связи Si-О-Si и приводя к образованию групп Si-О-Na
Рис. 3
Определение химической стойкости. Химическая стойкость стекла в некоторых случаях может быть определена уже по внешнему его виду. При хранении на стекле появляется пленка влаги, постепенно переводящая силикаты в щелочи. Углекислота воздуха вступает во взаимодействие со щелочами, образуя карбонаты щелочноземельных металлов, выветривающиеся после высыхания водной пленки и оставляющие грязный налет. Таким образом, чистота стеклянных трубок является первым признаком их доброкачественности. Загрязнения говорят о низкой химической стойкости стекла. Основными методами определения доброкачественности ампульного стекла являются химические. Из них официнальным считается метод, принятый ГОСТ 10780-64.
Отобранные ампулы тщательно промывают горячей водой, дважды ополаскивают дистиллированной водой, наполняют свежеперегн энной дистиллированной водой (рН 5,0-6,8) до номинальной вместимости и запаивают. Ампулы автоклавируют в течение 30 мин при давлении 2 ата, а затем после их охлаждения определяют при помощи рН-метра сдвиг рН воды, извлеченной из ампул, по отношению к рН исходной дистиллированной воды. Сдвиг рН должен быть не выше 2,9 для ампул, изготовленных из стекла марки АБ-1, не более 1,3 для марки НС-1 и 2,0 для марки НС-2.Ввиду того что растворы различных лекарственных веществ по-разному агрессивны по отношению к стеклу, лучше испытывать ампулы с теми лекарственными веществами, для которых они предназначены.
Из других известных методов простотой отличается фенолфталеиновый метод (предложен Д. И. Поповым и Б. А. Клячкиной). Ампулы заполняют водным раствором индикатора (1 капля 1% спиртового раствора фенолфталеина на 2 мл воды), запаивают и деляг на три части:одну часть ампул стерилизуют 30 мин при 100 °С, другую - 20 мин при 120 °С и третью оставляют для контроля. В ампулах из химически стойкого стекла (НС-1) не наблюдается красного окрашивания даже при автоклавировании. Если это окрашивание появилось после автоклавирования, но отсутствовало после стерилизации при 100 °С, такие ампулы рассматриваются как менее стойкие (НС-2). Окраска в обоих случаях стерилизации говорит о малой химической стойкости ампул (АБ-1); они пригодны для наполнения только масляными растворами. При определении химической стойкости ампул необходимо учитывать удельную поверхность их, т. е. отношение внутренней поверхности ампулы к объему находящейся в ней.
Определение термической стойкости. Ампулы должны обладать не только химической, но и термической стойкостью, т. е. не разрушаться при резких колебаниях температуры, в частности при стерилизации. Проверку термической стойкости производят следующим образом:испытуемые ампулы наполняют дистиллированной водой, запаивают и нагревают в автоклаве при 120°С в течение 30 мин. Партию ампул считают годной, если не менее 95% ампул взятой пробы останутся целыми.
При оценке доброкачественности ампульного стекла немаловажное значение имеют его легкоплавкость, бесцветность и прозрачность.
Легкоплавкость стекла. Ампульное стекло должно быть достаточно легкоплавким, чтобы шейку ампулы можно было быстро запаять в пламени горелки. Легкоплавкость устанавливают практическим путем, так как нормы еще не разработаны,
Бесцветность и прозрачность стекла. Эти качества стекла дают возможность заменить в инъекционном растворе механические загрязнения (волоски, осколки стекла, обрывки фильтровального материала), а также признаки порчи растворов (помутнение, появление осадка, изменение цвета раствора и т.д.). Применять оранжевые или другого цвета стекла рекомендуется не всегда, ибо в таких ампулах нельзя заметить изменений окраски растворов (адреналина и некоторых других). Кроме того, по литературным данным, применение ампул из желтого стекла в некоторых случаях (растворы натрия аскорбината) является вредным, так как при стерилизации из стекла выделяется остаточное количество железа. В заключение нужно указать, что ампулы с инъекционными растворами сохраняют уложенными в коробки, куда не проникает свет.
Химическая стойкость. Химической стойкостью называется способность стекла противостоять разрушающему действию воды, растворов солей, влаги и газов атмосферы. Стойкость стекла к действию щелочей называется щелочестойкостью, к действию кислот - кислотостойкостью. С увеличением в стекле содержания щелочей оксидов (Na2O или K2O) химическая стойкость стекла снижается. Введение в состав стекла оксидов цинка, циркония, магния, бария способствует повышению химической стойкости стекла.
Химическую стойкость стекла определяют по разности массы образца до и после испытания. Для испытания приготовляют порошок из стекла или массивный образец стекла, взвешивают его и затем кипятят в агрессивной среде, чаще всего в растворах NaOH, Na2CO3, HCl и дистиллированной воде. После опыта образец высушивают и взвешивают на аналитических весах. Потеря в массе стекла и характеризует его химическую стойкость. Химическую стойкость определяют также титрованием кислотой (HCl) раствора, в котором было обработано испытуемое стекло. В этом случае химическая стойкость характеризуется количеством кислоты, затраченной на титрование:чем больше израсходовано кислоты на титрование, тем меньше химическая стойкость стекла. Щелочестойкость оконного стекла определяют попотере массы с 1 дм2 пластины стекла при обработке ее в кипящем однонормальном растворе углекислого натрия в течение 3 ч. Потеря при этом не должна превышать 38 мг с 1 дм2 поверхности.
В зависимости от способности стекол противостоять разрушающему действию воды и других агрессивных растворов их подразделяют на гидролитические классы, которые определяются количеством HCl, пошедшим на титрование.
Гидролитические классы (расход HCl, мл):- не изменяемые водой стекла - 0-0,32,- устойчивые стекла - 0,32-0,65,- твердые аппаратные стекла - 0,65-2,8,- мягкие аппаратные стекла - 2,8-6,5,- неудовлетворительные стекла - 6,5 и больше.
Наибольшую химическую стойкость имеет кварцевое стекло, оно относится к I гидролитическому классу, химико-лабораторные стекла, как правило, ко II. Большинство промышленных стекол принадлежит к самому обширному - III гидролитическому классу, а наиболее устойчивые из них - оконное и полированное - к первой половине этого класса.
Химическая стойкость силикатных стекол в основном зависит от химического состава и определяется содержанием в них кремнезема. SiO2 значительно увеличивает химическую стойкость стекла, щелочные же окислы, как правило, понижают ее. Другие компоненты стекла ведут себя по-разному по отношению к различным реагентам. Поэтому при подборе химических составов стекол руководствуются тем, в каких условиях они будут использоваться.
Плотность стекла в зависимости от химического состава изменяется от 22 до 70·102 кг/м3. Минимальную плотность имеет кварцевое стекло (22·102 кг/м3), а плотность стекол, содержащих большое количество оксида свинца, достигает 70·102 кг/м3.
С повышением температуры плотность силикатных стекол понижается на 15 кг/м3 на каждые 100°С. Отжиг стекла влияет на плотность. Так, плохо отожженное стекло одного и того же химического состава имеет плотность на 10 ... 20 кг/м3, а закаленное на 80 ... 90 кг/м3 ниже, чем отожженное. С изменением химического состава стекла его плотность заметно изменяется, поэтому на практике она служит косвенным средством контроля постоянства состава стекла.
Больше половины всего выплавляемого стекла перерабатывается на листы для остекления зданий. Широкое применение в строительстве нашли изделия из стекловолокнистых материалов (стеклянная вата, маты, жгуты и др.), которые используются в качестве тепло- и звукоизоляторов. Они не гниют и не плесневеют, обладают малым объемным весом, огнестойкостью и вибростойкостью.
Около трети всей стекольной продукции - сосуды самого разнообразного типа, фасона и назначения. Замечательные декоративные свойства стекла (способность воспринимать различные окраски, передавать игру света, разнообразие в переходах от кристальной прозрачности через все степени замутнения до полной непрозрачности) обусловили существование особой группы изделий, объединяемых общим названием "художественное стекло". Сюда относится художественная столовая посуда, монументальные стеклянные изделия (барельефы, торшеры, вазы, люстры и др.) и разнообразные отделочные материалы (плитки и листы для облицовки стен, полов зданий, карнизы, фризы и др., использование стекла в витражах). Одной из важных отраслей художественного стеклоделия является производство смальт (непрозрачных стекол) широкого ассортимента. Эти стекла используются при создании монументальных стенных панно в технике мозаичной живописи, родственной технике витража.
В виде стеклоэмалей, непрозрачных тонких стекловидных слоев различных цветов, стекло используется как защитное покрытие, предохраняющее металлические изделия от разрушения и придающее им внешний вид, удовлетворяющий эксплуатационным и эстетическим требованиям. Стеклоэмали применяются при изготовлении химической и пищевой аппаратуры, посуды, изделий санитарной техники, труб, вывесок, облицовочных плиток, ювелирных изделий.
Оптическая промышленность и оптическое стекло позволили создать современные точнейшие оптические приборы во всем разнообразии их типов и назначений (обычные очки, микроскопы, телескопы, фото- и киноаппараты и др.).
Особо чистое кварцевое стекло используется для изготовления волоконных световодов при создании волоконно-оптических линий связи, позволяющих передавать большие объемы информации. Отдельный класс стекол образуют так называемые лазерные стекла. Это многокомпонентные стекла различной природы (силикатные, фосфатные, фторбериллатные, боратные, теллуритные и др.), активированные неодимом. Лазеры могут быть миниатюрными, как, например, используемые в медицине, и могут представлять собой мощные системы, применяемые в термоядерном синтезе. Лазеры применяются также в научных исследованиях, геодезии, при точной обработке металлов.
Из краткого обзора областей применения стекла очевидно, что необходимо изготавливать стекла, разные по свойствам:особо химически стойкие, особо прочные механически, обладающие определенными коэффициентами термического расширения, заданными оптическими и электрическими константами и др. Поэтому неудивительно, что исследователи прилагают много усилий для постижения природы стекла, выяснения влияния разнообразных факторов на его различные свойства.
Do'stlaringiz bilan baham: |