Ранговые алгоритмы локально-адаптивны по своей сути, поскольку их параметры являются функциями локальной характеристики изображений - локальной гистограммы.
Термин "ранговые алгоритмы" в обработке изображений появился относительно недавно, когда множество алгоритмов, которые фактически относятся к классу ранговых, были уже достаточно известны. Для фильтрации импульсных помех и сглаживания изображений давно используется предложенный Тьюки алгоритм медианной фильтрации. Известны также алгоритмы экстремальной фильтрации, которые используют значения минимума и максимума в окрестности. Все эти алгоритмы можно рассматривать как частные случаи широкого класса ранговых алгоритмов. Методы ранговых преобразований позволяют осуществить нелинейное усиление высокочастотной составляющей изображения. Это приводит к повышению детальности изображений, однако сопровождается уменьшением контрастности тонкоструктурных объектов. Возможным вариантом устранения этого недостатка является использование взвешенных ранговых преобразований.
Кроме применений для сглаживания, усиления детальности, выделения деталей изображений и границ деталей, ранговые алгоритмы можно употреблять для решения многих других задач обработки изображений, в частности, для диагностики статистических характеристик искажений видеосигнала, стандартизации изображений, определения статистических характеристик видеосигнала и измерения текстурных признаков. Применимость ранговых алгоритмов для кодирования связана с возможностями адаптивного квантирования мод при пофрагментной (не скользящей) обработке.
В пакете IPT предложены некоторые функции ранговой обработки изображений. Функция D=ordfilt2(S, order, domain) позволяет пикселю изображения D, соответствующему центральному элементу маски, присвоить значение с номером order в отсортированном (по возрастанию) множестве. Функция D=ordfilt2(S, order, domain, А) работает аналогично функции D=ordfilt2(S, order, domain), за исключением того, что перед сортировкой к значениям пикселей, соответствующих ненулевым элементам маски фильтра domain, прибавляются значения из матрицы А. Частным случаем ранговой фильтрации является медианная фильтрация.
Анализ и сравнение приведенных выше теоретических основ ранговых методов и функций пакета обработки изображений в системе MATLAB приводит к выводу о необходимости создания программных средств, реализующих методы ранговой обработки изображений. Такие работы проводятся. Они позволяют не только исследовать существующие алгоритмы, но и, выявив их недостатки, создавать новые высокоэффективные методы ранговой обработки изображений.
2.1.2 Разностные методы
Психофизические эксперименты показывают, что фотографическое или телевизионное изображение с подчеркнутыми границами часто воспринимается субъективно лучше, чем фотометрически совершенная продукция. Процедуру подчеркивания границ реализуют с использованием методов нечеткого маскирования ( разностных методов ). Суть этих методов состоит в следующем. Исходное изображение сканируют двумя апертурами с различной разрешающей способностью. В одной апертуре разрешающая способность отвечает норме, а во второй - ниже нормы. В результате образуются два массива: массив элементов изображения L и массив элементов нечеткого изображения . Результат формируется путем вычитания изображений по алгоритму:
(2.5)
Do'stlaringiz bilan baham: |