Размещено на


Аксиомы Пеано. Метод математической индукции



Download 122,16 Kb.
bet3/6
Sana23.02.2022
Hajmi122,16 Kb.
#175466
1   2   3   4   5   6
Аксиомы Пеано. Метод математической индукции

1.во мн. N существует элемент, непосредственно не следующий ни за каким элементом этого множества. 2. Для каждого элемента а из мн.N существует единственный элемент а’,непосредственно следующий за а. 3.для каждого элемента а из мн.N существует не более одного элемента, за которым непосредственно следует а.


4.если подмн.М мн.N содержит число 1 и из того, что элемент а €М, следует, что и элемент аˊ€М, то мн.М совпадает с мн.N. Мн.N, удовлетворяющее аксиомам 1-4, называют мн.нат.чисел, а элементы мн.N называют нат.числами.4 аксиому называют аксиомой индукции. Метод матем.индукции- это метод док-ва, основанный на принципе матем.индукции и применяемый для утверждений вида Р(п). Принцип: если утверждение Р(п) с переменной п истинно для п=1 и из того, что оно истинно для произвольного числа п=k, следует, что оно истинно и для следующего за ним числа п= k+1, то утверждение Р(п) истинно для любого натурального числа п. Док-во м.матем.нндукции состоит из трёх частей: 1.проверяют истинность утверждения Р(п) при п, равном 1, то есть проверяют Р(1). 2.предполагают истинность утверждения Р(п) при п, равном k, то есть предполагают истинность Р(k). 3.на основании предположения доказывают истинность утверждения при п= k+1, то есть доказывают истинность импликации Р(k)=>Р(k+1). Вывод: утверждение Р(п) истинно для любого натурального п.
П:док-ть, что для любого натурального числа п верно равенство 1+2+3+…+(2п-1) =п2. Док-во: при п=1 равенство имеет вид 1=12. Оно верное. Предположим, что при п= k верно следующее равенство: 1+2+3+ …+ (2 k-1) = k2. На основании предположения докажем, что при п= k+1 будет верным равенство: 1+2+3+ ..+(2 k-1)+ (2(k+1)-1) =( k+1)2. Преобразуем левую часть равенства и покажем, что она совпадает с правой частью. В самом деле, по предположению сумма 1+2+3+ …+ (2 k-1) равна k2, тогда левая часть равенства будет иметь вид: k2+2(k+1)-1 = k2+ 2 k+1= (k+1)2. Видим, что левая и правая части равенства совпадают. Таким образом, из предположения о верности данного равенства при п= k доказана верность его при п= k+1. Следовательно, на основании принципа матем.индукции данное равенство верно при любом натуральном п.


Download 122,16 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish