Синхронные двигатели небольшой мощности применяются в системах автоматики. Поскольку в синхронных двигателях частота вращения жестко связана с частотой питания, такие двигатели применяются либо в системах, требующих строго постоянной частоты вращения, либо при частотном управлении скоростью.
К группе синхронных двигателей можно отнести также двигатели, частота питания которых зависит от частоты вращения - это так называемые вентильные двигатели. Но поскольку они имеют коммутатор и их характеристики похожи на характеристики двигателей постоянного тока, они будут рассмотрены в главе 5.
В цифровых системах автоматики находят широкое применение шаговые двигатели, в обмотки статора которых поступают импульсы тока и при поступлении каждого импульсов происходит поворот ротора на определенный угол - двигатель совершает шаг. В зависимости от особенностей возбуждения шаговые двигатели, как и другие типы синхронных двигателей, делятся на двигатели с активным ротором, представляющим собой явнополюсный ротор из постоянного магнита, и с реактивным ротором, представляющим собой явнополюсный или зубчатый ротор из магнитомягкого материала.
Рассмотрим более подробно принцип действия и характеристики шаговых двигателей.
Статор шаговых двигателей в отличие от синхронных микродвигателей непрерывного вращения имеет явновыраженные полюсы, на которых располагаются обмотки управления. Число пар полюсов каждой из обмоток управления p равно числу пар полюсов ротора.
Наибольшее развитие получили ШД активного типа - с ротором, содержащим многополюсный постоянный магнит.
Принцип действия такого ШД рассмотрим на примере двухфазной двухполюсной конструкции ( ).
Рис. 4-3а. Схема шагового двигателя.
Этот двигатель имеет две взаимно перпендикулярные обмотки А и В, в которые могут подаваться импульсы тока разной полярности, как показано на .
Рис. 4-4. Временная диаграмма работы ШД.
Наличие тока в обмотке создает магнитный поток статора Ф0, который поворачивается при переключении обмоток на угол α. Вслед за потоком поворачивается и активный ротор, т.е. при каждом переключении двигатель делает шаг. Полный оборот потока совершается за m-тактный (в данном случае четырехтактный) цикл.
В общем случае для двигателя с активным ротором шаг двигателя
где p- число пар полюсов, m- число тактов управления.
Поворот ротора совершается под действием так называемого синхронизирующего момента, который возникает при отклонении ротора от направления потока на угол γ, как показано на .
Часто вводят понятие электрических углов, при которых многополюсных двигатель сводится к двухполюсной (однопериодной) модели. Для двигателей с активным ротором
; .
Электрический угол γэ эквивалентен внутреннему углу синхронной машины Θ в формуле . Тогда согласно в ШД с активным ротором, где преобладает магнитоэлектрический момент
,
где Mc_max- максимальный синхронизирующий момент, fсэ и fрэ- электрические углы поворота МДС статора и оси ротора.
При переключении фазы происходит сдвиг статической характеристики на угол αэ, как показано на .
Рис. 4-3в. Статическая характеристика шагового двигателя.
Возникает пустой момент Mп, под действием которого происходит поворот ротора в согласованное с магнитным потоком положение. Если двигатель нагружен внешним магнитом MB, то ротор переходит из точки 1 в точку 3 по траектории 1-2-3. Для того, чтобы при переключении обмотки происходил поворот ротора, необходимо выполнение условия MП≥MB. Отсюда существует допустимый внешний момент Mдоп и соответствующий ему допустимый угол отклонения оси ротора от направления потока γэ_доп, при которых МП=МВ=МДОП. Чем больше ШД имеет фазных обмоток и соответственно тактов переключения, тем меньше у него шаг γэ и соответственно больше МДОП. Поэтому обычно ШД являются многофазными (от 3-х до 6-ти фаз). По этой причине, как видно из , двухфазный ШД с пассивным ротором вообще не работоспособен.
Рис. 4-3г. Схема шагового двигателя.
Рис. 4-3д. Статическая характеристика шагового двигателя.
Рис. 4-3е. Статическая характеристика шагового двигателя.
Так, у него согласно вращающий момент определяется реактивной составляющей
и статическая характеристика имеет вид, показанный на .
Отсюда соотношения для электрических и геометрических углов поворота ротора будут
; ,
т.е. для двухфазного ШД p=1,α=90·град, а αэ=180·град, сдвиг характеристики при переключении фазы происходит на 180 градусов, как показано на и ротор не поворачивается, так как пусковой момент равен нулю.
Физически это можно объяснить тем обстоятельством, что при пассивном роторе направление синхронизирующего момента не зависит от направления потока. Момент равен нулю и в том случае, когда поток направлен вдоль полюсов и когда поперек полюсов, и достигает максимума, когда ось ротора располагается между полюсами статора, в отличие от активного ротора, в котором момент максимален, если поток направлен поперек ротора. Поэтому реактивные ШД должны иметь как минимум три обмотки и трехтактную систему коммутации.
Существуют различные режимы работы ШД:
Статический режим соответствует прохождению постоянного тока по обмоткам управления, создавая неподвижное магнитное поле. Основной характеристикой этого режима является статическая характеристика MC=f(γэ), рассмотренная ранее ( ).
Режим отработки единичных шагов соответствует частоте управляющих импульсов, при которой переходный процесс, чаще всего колебательный, на каждом шаге заканчивается к началу следующего шага, т.е. угловая скорость ротора f`р в начале каждого шага равна нулю (см. ).
Рис. 4-5. Отработка единичных шагов.
Основными показателями этого режима являются: перерегулирование Δfп, максимальное значение мгновенной угловой скорости f`p_max, время затухания свободных колебаний ротора tзат.
Если время электромагнитных переходных процессов значительно меньше, чем механических, движение ротора ненагруженного ШД можно описать следующим уравнением
,
где Mдин- динамический момент, Мдем- демпфирующий электромагнитный момент.
Динамический момент определяется моментом инерции ротора и ускорением:
Внутреннее электромагнитное демпфирование колебаний ротора происходит за счет поведения ЭДС вращения в обмотках управления. Значение демпфирующего момента пропорционально угловой скорости ротора:
,
где D- коэффициент демпфирования.
Если рассматривать работу ШД при малых углах рассогласования осей ротора и МДС статора (sin(γ)≈ γ), то, подставив , и в , получим дифференциальное уравнения движения ротора:
В этом выражении коэффициент при fрэ есть квадрат угловой частоты собственных колебаний ротора
,
а коэффициент при f`рэ характеризует относительный коэффициент затухания колебаний λ:
.
Установившийся режим работы ШД соответствует постоянной частоте управляющих импульсов f, причем . В установившемся режиме вращение ротора с некоторой средней угловой скоростью ω сопровождается вынужденными колебаниями.
Амплитуда колебаний достигает наибольшего значения при частоте управляющих импульсов, совпадающей с резонансной - собственной частотой ротора:
Важной характеристикой установившегося режима является предельная механическая характеристика, представляющая собой зависимость допустимого момента сопротивления от частоты управляющих импульсов. Предельную механическую характеристику рассматривают обычно при f>f0 ( ).
Рис. 4-6а. Предельные механические характеристики ШД.
Снижение MДОП при увеличении f объясняется в основном наличием электромагнитной постоянной времени Tу обмоток управления
,
где Rу и Lу- активное сопротивление и индуктивность обмоток управления. Последнее объясняется тем, что чем больше Tу, тем меньше за время импульса нарастает ток, что снижает синхронизирующий момент. Снижение напряжения питания также уменьшает MДОП.
Переходные процессы - пуск, торможение, реверс, переход с одной частоты на другую - сопровождаются переходными процессами в ШД.
Важным показателем переходного режима является приземистость ШД - наибольшая частота управляющих импульсов, отрабатываемая ШД для потери шага - частота приемистости fпр.
Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции и статического момента сопротивления (см. , где МВ- внешний момент сопротивления типа трения).
Рис. 4-6б. Предельные динамические характеристики ШД.
Do'stlaringiz bilan baham: |