Рис. 1. Первичные преобразователи расходомеров переменного перепада давления.
1.3. Требования к расходомерам и счетчикам
Эти требований многочисленны и разнообразны. Удовлетворить совместно все требования очень трудно, если не невозможно. Одни типы приборов в большей мере удовлетворяют одним требованиям, а другие — другим. Поэтому при выборе того или иного типа прибора следует исходить из сравнительной важности тех или других требований, предъявляемых к измерению расхода или количества в каждом конкретном случае.[5]
1. Высокая точность измерения. Это важнейшее требование, особенно когда надо измерить не мгновенный расход, а количество (массу или объем) прошедшего вещества. Если раньше погрешность измерения в 1,5-2 % считалась приемлемой, то теперь нередко требуется иметь погрешность не более 0,2-0.5 %. Эта весьма малая погрешность уже достигнута в камерных счетчиках жидкостей (лопастных, роликово-лопастных) и ряде других счетчиков. Но такие счетчики не предназначены для больших диаметров труб. Здесь преимущественно применяют расходомеры с сужающими устройствами. Для повышения их сравнительно ограниченной точности используют преобразователи давления, температуры или плотности, измерительные сигналы которых поступают в вычислительные устройства, вносящие коррекцию в показания расходомера - днфманометра. Имеются расходомеры с погрешностью всего 0,25-1,0% (тахометрические, вихревые, электромагнитные, ультразвуковые), но не все из них пригодны для больших трубопроводов.
2 . Высокая надежность. Это второе важнейшее требование. Оно оценивается временем, в течение которого прибор сохраняет работоспособность в достигнутую точность. Это время зависит от типа прибора и от условий его применения. Некоторые расходомеры и их элементы, не имеющие движущихся частей, могут надежно работать очень долго. Так, трубы Вентури, установленные на водопроводных линиях Санкт-Петербурга, исправно действуют более 60 лет. Но тахометрические расходомеры и счетчики с движущимся ротором имеют много меньший срок службы, зависящий от степени чистоты измеряемого вещества и его смазывающей способности. В технических условиях на некоторые турбинные расходомеры установлен шестилетний межповерочный срок нормальной работы.
3. Малая зависимость точности намерения от изменения плотности вещества. Лишь тепловые и силовые расходомеры, измеряющие массовый расход, обладают этим ценным свойством, У других типов приборов надо иметь устройства, автоматически вводящие коррекцию на изменение плотности или хотя бы температуры и давления измеряемого вещества. Это особенно необходимо при измерении расхода газа.
4. Быстродействие прибора или его высокие динамические характеристики. Это требование важно, когда расходомер применяют в системах автоматического регулирования и при измерении быстроменяющихся расходов. Быстродействие удобно оценивать значением постоянной времени Т прибора, т. е. временем, в течение которого его показания при скачкообразном изменении расхода от до изменяются приблизительно на две трети от значения . Имеется очень большая градация быстродействия от Т, измеряемого сотыми (и еще менее) долями секунды от турбинных, до Т, измеряемого десятками секунд у тепловых расходомеров.
Д ля улучшения быстродействия последних применяют особые (дифференцирующие) измерительные схемы. Расходомеры с сужающими устройствами занимают промежуточное положение. Их время Т тем меньше, чем короче соединительные трубки, чем меньше измерительный объем дифманометра и чем больше его предельный перепад давлений.
5. Большой диапазон изменения. У приборов с линейной характеристикой он равен 8-20 и более, а у расходомеров с СУ, имеющих квадратичную характеристику, он равен лишь 3-10. В случае необходимости его можно повысить до 16, подключая к СУ два дифманометра с разными .
6. Обеспеченность метрологической базой. Образцовые расходомерные установки, необходимые для градуировки и поверки различных расходомеров, сложны и дороги, особенно при больших поверяемых расходах. В стране их сравнительно немного, и предназначены они преимущественно для поверки расходомеров воды и водосчетчиков. Одни лишь расходомеры с СУ не требуют образцовых расходомерных установок, потому что для большинства их разновидностей были экспериментально установлены и нормированы их коэффициенты расходов и расширения в международном стандарте ИСО 5167 и других рекомендациях ИСО. На их основе выпускаются в отдельных странах Правила по применению расходомеров с СУ. Сказанное объясняет преимущественное применение расходомеров с СУ, потому что почти все остальные типы требуют для своей поверки образцовых установок. В связи с их отсутствием и сложностью транспортирования первичных преобразователей расхода, особенно больших размеров, весьма актуальна как разработка имитационных методов поверки (они уже разработаны для магнитных расходомеров), так и разработка методов поверки на месте установки расходомеров без их демонтажа (концентрационный, меточный и другие методы).
7 . Очень большой диапазон расходов, подлежащих измерению. Для жидкости надо измерять расходы в пределах от до кг/ч, а для газов — в пределах от до кг/ч, т. е. расходы, отличающиеся на десять порядков. Особые трудности возникают при измерении как очень малых, так и очень больших расходов. Здесь нередко приходится применять особые методы измерения, например парциальный (при больших расходах). Относительно проще измерять средние расходы.
8. Необходимость измерения расхода не только в обычных, но и в экстремальных условиях, при очень низкой или очень высокой температуре и давлении. Так, расход криогенных жидкостей, например сжиженного водорода, надо измерять при очень низких температурах (до—255 ), а расход перегретого пара сверхвысокого давления и расход расплавленных металлов теплоносителей — при температурах, достигающих +600 .
Подобные условия создают дополнительные трудности для обеспечения надежного измерения расхода.
9. Широкая номенклатура измеряемых веществ. Вещества могут быть не только однофазными и однокомпонентными, но также многофазными и многокомпонентными. При этом надо учитывать как особые свойства вещества (агрессивность, абразивность, токсичность, взрывоопасность и т. д.), так и его параметры (давление, температура). Особая задача — измерение расхода расплавленных металлов — теплоносителей. Между тем основные методы измерения расхода были разработаны для однофазных сред (для жидкости, газа и пара). Теперь же все актуальнее становится задача измерения двухфазных и даже иногда трехфазных веществ. Имеются следующие основные разновидности двухфазных сред: гидросмесь пли пульпа-смесь жидкой и твердой фаз — это водогрунтовая смесь, целлюлозно-бумажная пульпа, гидротранспорт и т. п.; смесь газообразной и твердой фаз — это пылеугольное топливо, пневмотранспорт цемента и т. п.; смесь жидкости с газом — это нефтегазовая смесь и влажный насыщенный пар. Измерение их расхода очень важно, хотя и представляет определенные трудности. Пример трехфазной смеси — газированная пульпа, а трехкомпонентной — двухфазная смесь нефти, воды и газа.[7]
1.4 Уравнение Бернулли
Do'stlaringiz bilan baham: |