Ranch texnologiya universiteti “Iqtisodiyоt va ishlab chiqarishni tashkil qilish” kafedrasi “Oliy matematika” fanidan yakuniy nazorat savollari



Download 1,05 Mb.
bet9/45
Sana13.07.2022
Hajmi1,05 Mb.
#790299
1   ...   5   6   7   8   9   10   11   12   ...   45
Bog'liq
11-32

Teorema. Teskari matritsa mavjud bo`lishi uchun det(A) ≠ 0 bo`lib, A matritsaning maxsusmas bo`lishi zarur va yetarli.
Berilgan maxsusmas kvadrat matritsaning teskari matritsasini qu-rishning «klassik» va Jordan usullari mavjud.
Berilgan A = (aiκ) kvadratik matritsa har bir elementini o`zining ad`yunkti bilan almashtirib, so`ngra hosil bo`lgan matritsani transponirlasak, quyidagi A matritsa elementlari mos ad`yunktlari matritsasining transponirlangan matritsasi A ni hosil qilamiz:

A matritsaga A matritsaning qo`shma matritsasi deyiladi.


n- tartibli determinantning 6 va 7 xossalariga asosan:

Tenglikni ixcham shaklda AA = det AE ko`rinishda yozish mum-kin. Tenglamaning ikkala tomonini noldan farqli det A ga bo`lsak,



.

Ikkinchi tomondan teskari matritsa ta`rifiga binoan AA-1 = E. Teng-lamalarni solishtirib, A kvadratik maxsusmas matritsaning teskari mat-ritsasi A-1 uchun quyidagi formulani olamiz:





Oxirgi formula A maxsusmas matritsaning teskarisini qurish klassik usul formulasi deyiladi. Umuman olganda, klassik usulda teskari matritsa qurish jarayoni quyidagi ketma-ket bajariladigan qadamlarni o`z ichiga oladi:
1. Berilgan A kvadrat matritsa determinanti kattaligi hisoblanadi. Agar detA ≠ 0 bo`lsa, keyingi qadamga o`tiladi. Agarda detA = 0 bo`lsa, A matritsa maxsus va teskari matritsa mavjud emas;
2. A = (aiκ) matritsa elementlarining mos ad`yunklari hisoblanadi va tartib saqlangan holda, matritsa elementlari mos ad`yunktlari matritsasi (Aiκ) tuziladi;
3. (Aiκ) matritsa transponirlanadi va A matritsa elementlari mos ad`yunklari matritsasining transponirlangan matritsasi yoki shuning o`zi qo`shma A = (Aκi) matritsasi tuziladi;
4. A = (Aκi) matritsa har bir elementi detA ga bo`linadi va A-1 teskari matritsa quriladi.
Masala. maxsusmas matritsaning teskari matritsasini klassik usulda quring.
Klassik usulda ikkinchi tartibli maxsusmas matritsa teskarisi

formula asosida quriladi. Formulani qo`llab,

natijani olamiz. Teskari matritsa to`g`ri qurilganini ta`rif asosida tekshirib ko`ramiz:

Demak, berilgan A matritsaning teskarisi .
Berilgan A kvadratik matritsa teskarisi A-1 Jordan usuli asosida quyidagicha quriladi: A matritsaga o`ngdan tartibi uning tartibiga teng birlik E matritsa qo`shiladi va kengaytirilgan (A | E) matritsa tuziladi. Parallel ravishda kengaytirilgan matritsaning chap va o`ng qismlari satrlari ustida elementar almashtirishlar bajarilib, chap qism birlik matritsa ko`rinishiga keltiriladi. Kengaytirilgan matritsaning chap qismi birlik E matritsa ko`rinishiga keltirilganda uning o`ng qismida teskari A-1 matritsa hosil bo`ladi. Teskari matritsa qurish Jordan usuli algoritmi quyidagi sxema shaklida ifodalanishi mumkin: (A | E) ~ (E | A-1).

  1. Determinantni hisoblang.






Download 1,05 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   45




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish