Python Projects for Beginners a ten-Week Bootcamp Approach to Python Programming



Download 2,61 Mb.
bet179/200
Sana20.06.2022
Hajmi2,61 Mb.
#681748
1   ...   175   176   177   178   179   180   181   182   ...   200
Bog'liq
Python Projects for Beginners A Ten Week Bootcamp Approach to Python

Key Terms


The following are key terms we’ll be using throughout this section. Be sure to look over them and reference them when necessary:

  • Series ➤ One-dimensional labeled array capable of holding data of any type

  • DataFrame ➤ Spreadsheet

  • Axis ➤ Column or row, axis = 0 by row; axis = 1 by column

  • Record ➤ A single row

  • dtype ➤ Data type for DataFrame or series object

  • Time Series ➤ Series object that uses time intervals, like tracking weather by the hour

Installing Pandas


To install Pandas, make sure your virtual environment is activated first, then write the following command into the terminal:

$ pip install pandas

After running the command, it should install a few packages that Pandas requires. If you’d like to check and make sure you downloaded the proper library, just write out the list command.

Importing Pandas


To follow along with the rest of this lesson, let’s open and continue from our previous notebook file “Week_10” and simply add a markdown cell at the bottom that says,
Pandas.”
Importing Pandas is simple; however, there is an industry standard when you import
the library:

# importing the pandas library import pandas as pd # industry standard name of pd when importing

Go ahead and run the cell. We import Pandas as pd because it’s shorter and easier to reference.

Creating a DataFrame


The central object of study in Pandas is the DataFrame, which is a tabular data structure with rows and columns like an Excel spreadsheet. You can create a DataFrame from a Python dictionary or a file that has tabular data, like a CSV file. Let’s create our own from a dictionary:

1| # using the from_dict method to convert a dictionary into a Pandas DataFrame
2| import random
CHapter 10 INtroduCtIoN to data aNalYsIs
4| random.seed(3) # generate same random numbers every time, number used doesn't matter
6| names = [ "Jess", "Jordan", "Sandy", "Ted", "Barney", "Tyler", "Rebecca" ]
7| ages = [ random.randint(18, 35) for x in range( len(names) )]
9| people = { "names" : names, "ages" : ages }
11| df = pd.DataFrame.from_dict(people)
12| print(df)

Go ahead and run the cell. We import the random module so that we may create random ages for our people on line 7. Using the seed method on line 4 will give us both the same random numbers to work with. You could pass any number as the argument into seed; however, if you use a number other than 3, you’ll get a different output than this book.
Note random numbers aren’t truly random; they follow a specific algorithm to return a number.
After we generate a list of names and random ages for each person, we create a dictionary called “people.” The magic truly happens on line 11, where we use Pandas to create the DataFrame that we’ll be working with. When it’s created, it uses the keys as the column names, and the values match up with the corresponding index, such that names[0] and ages[0] will be a single record. You should output a table that looks like Table 10-1.
Table 10-1. DataFrame created from fake data


Download 2,61 Mb.

Do'stlaringiz bilan baham:
1   ...   175   176   177   178   179   180   181   182   ...   200




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish