Python Programming for Biology: Bioinformatics and Beyond


Machine learning algorithms



Download 7,75 Mb.
Pdf ko'rish
bet392/514
Sana30.12.2021
Hajmi7,75 Mb.
#91066
1   ...   388   389   390   391   392   393   394   395   ...   514
Bog'liq
[Tim J. Stevens, Wayne Boucher] Python Programming

Machine learning algorithms

There  are  some  properties  of  machine  learning  algorithms  that  make  them  attractive  to

use,  even  when  there  are  alternative  approaches  that  could  be  used  to  achieve  the  same

task. Firstly, you don’t have to think about the precise details of what is going on. As long

as you can train a program to do a good job, then that may be enough; although in some

cases  people  will  be  distressed  at  the  lack  of  a  proper  ‘reason  why’.  Secondly,  most

machine learning methods are indifferent to the kind of data that is being input or output,

as long as it can be encoded numerically; all sorts of disparate kinds of input data may be

combined if they improve the prediction being made. Thirdly, machine learning methods

are able to make non-linear and contextual decisions, which is to say that they can make

predictions when the relationships between data items are not straightforward, including,



for example, when two sets of input are generally very similar but some subtle correlation

causes a completely different result.

In this chapter we will cover four different machine learning examples, and you can try

these  for  your  own  computational  problems  where  appropriate.  For  each,  we  describe  a

simple  Python  implementation  (or  as  simple  as  we  can  make  it  while  still  being  useful)

and aim to point out the advantages and disadvantages of each method. We start with the



k-nearest  neighbour  algorithm,  which  is  perhaps  the  simplest  of  all  machine  learning

algorithms  and  relatively  easy  to  understand.  Despite  its  simplicity,  however,  in  some

situations it can make good classifications with relatively little effort. Also, it introduces

some of the principles, like vector input, that will be discussed in the other methods. Next

we  will  describe  a  self-organising  map  as  an  example  of  an  unsupervised  method,  and

then  go  on  to  two  supervised  methods:  a  feed-forward  artificial  neural  network  and  a



support vector machine. Both of these methods can be used in a large number of different

situations where there is training data available. The support vector machine is the more

recent  invention  and  holds  certain  advantages  over  neural  networks:  it  is  generally

deterministic,  giving  the  same  result  on  the  same  training  data,  and  it  is  much  less

susceptible to over-training, where a method ‘learns’ the training data too well and is not

general  enough  to  make  the  best  predictions  on  data  not  seen  before.  Nonetheless,  we

include the feed-forward neural network because it is easier to implement, especially for

multi-option  classification,  and  often  a  good  place  to  start  in  order  to  judge  whether

machine learning is an effective strategy for any given situation.


Download 7,75 Mb.

Do'stlaringiz bilan baham:
1   ...   388   389   390   391   392   393   394   395   ...   514




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish