Python Programming for Biology: Bioinformatics and Beyond



Download 7,75 Mb.
Pdf ko'rish
bet239/514
Sana30.12.2021
Hajmi7,75 Mb.
#91066
1   ...   235   236   237   238   239   240   241   242   ...   514
Bog'liq
[Tim J. Stevens, Wayne Boucher] Python Programming

Microarrays

A microarray is a means of performing many small-scale experiments on a sample at the

same time. These experiments will all be of the same kind, i.e. have the same experimental

design,  but  individual  experiments  will  have  different  conditions  or  components.  On  the

whole  these  experiments  will  be  physically  arranged  as  spots  in  a  rectangular  grid  on  a

solid surface (the matrix) and have their test components immobilised on that surface, so

they  cannot  mix.  The  basic  reason  for  doing  things  in  this  manner  is  to  make  things

quicker and easier. Lots of small experiments are performed at the same time, requiring a

proportionately small amount of sample and providing the same set of conditions for each

test (or at least very similar; there can be inhomogeneities across the array). Naturally, the




outcome  of  the  experiments  has  to  be  detected  at  the  end  and  the  final  state  of  the

microarray is generally measured using optical methods. Most microarrays are designed to

detect  the  binding  of  components  from  a  sample,  to  the  different  targets  in  the  array,  by

using  fluorescence.  Here  the  binding  causes  an  element  of  the  array  to  glow  when

irradiated with UV light. In terms of computing, what is important is that we know what

distinguishes the components of the different miniature experiments within the array, and

then at the end how much signal, e.g. fluorescence, is detected from each.

The actual solid support for the array of experiments is typically made of glass, plastic

or silicon and the experimental components are chemically bonded to its surface in a small

regular  array  (placed  there  by  machine).  The  components  are  generally  bio-molecules,

such  as  DNA,  protein  or  even  glycans  (poly-sugars),  but  could  also  be  samples  of  cells

(i.e.  a  tissue  microarray)  or  even  small  molecules.  In  the  case  of  DNA  microarrays  the

DNA strands of differing sequences are immobilised, with one sequence to each spot, on

the solid matrix and bind to complementary single-stranded nucleotides, i.e. they hybridise

through base-pair interactions. The samples that are applied to such an array will contain

mixtures  of  fluorescent-labelled  DNA  strands,  so  that  those  with  sequences  that  are

complementary  to  the  spots  hybridise,  to  cause  that  part  of  the  array  to  emit  a  certain

colour  of  light  visible  when  illuminated  with  UV  light.  Naturally,  to  know  which  DNA

sequences  have  been  detected  in  this  way  requires  that  the  sequence  of  each  spot  in  the

array  is  known.  For  protein  microarrays  the  situation  is  similar  but  the  array  spots  are

immobilised  proteins,  commonly  antibodies,  which  detect  other  molecules  in  a  specific

manner via non-covalent interactions.

Whatever the type of array component (be it DNA, protein or whatever) and however it

is  detected  we  will  use  the  same  basic  Python  data  structure  to  represent  all  kinds  of

microarray; they all have an array of spot elements in a rectangular grid and they all are

detected by means of some kind of scalar signal. Although this abstract description can be

applied  in  several  situations,  it  could  naturally  be  customised  or  extended  for  more

specialised  purposes.  It  should  be  noted  that  we  have  chosen  to  associate  the  array  with

parallel data layers, e.g. for red and green fluorescence channels, which is commonplace

for  microarrays.  Accordingly  an  array  element  may  be  associated  with  several  different

signal  values  and  the  system  is  flexible,  so  that  we  can  describe  anything  from  a  single

array  of  values  to  multiple  layers  representing  different  kinds  of  both  processed  and

unprocessed data.

What we gain from microarrays is a measure of interaction or reaction for each of the

spots  in  the  array.  An  array  will  tell  us  how  strongly  a  given  sample  interacts  with  each

spot  component.  One  of  the  Python  examples,  to  do  hierarchical  clustering,  will  analyse

this further to show similarities within a microarray. This is a common process to visually

indicate  similarities  between  rows  and  columns.  Here  we  can  look  back  to  some  of  the

phylogenetic  tree-building  code  and  borrow  a  function,  illustrating  the  usefulness  of

keeping  Python  functions  abstract  and  general.  We  also  show  how  you  can  look  for

similarities  and  differences  in  array  data,  for  example  by  comparing  different  colour

channels. In such circumstances it can be important to use controls and normalise the data,

to test whether the detection worked equally well in each case and to remove systematic

error.  With  this  in  mind  several  of  the  following  examples  are  based  on  normalisation

techniques  which  will  allow  the  comparison  of  different  data  arrays  even  if  the  overall



levels  of  signal  differ,  although  which  particular  technique  is  used  will  vary  for  each

situation.




Download 7,75 Mb.

Do'stlaringiz bilan baham:
1   ...   235   236   237   238   239   240   241   242   ...   514




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish