bins, valRange,
density)
Given an input array of
values generates a histogram
(counts and edges arrays) by
counting values within range
data = [0.1, 0.5, 1.5,
1.3, 1.0]
hist = histogram(data, 3,
(0,3))
vals, edges = hist
bins. The
bins
can be
specified as a number of bins
or as a list of boundary
values. If unspecified the
value range is from the
minimum to maximum
values of the input. Option to
normalise the histogram so
its summation is one:
density=True.
print(vals)
# [2, 3, 0]
print(edges)
# [ 0., 1., 2., 3.]
hstack(arrays)
Combines a sequence (e.g.
list) of arrays into a larger
array by stacking them
column-wise, along their
first axis. For example,
combines 1D vectors into a
single long 1D vector.
v1 = array([0,1,2])
v2 = array([7,8,9])
v3 = hstack([v1, v2])
# array([0, 1, 2, 7, 8,
9])
inner(arry1,
arry2)
Calculates the inner product
of two arrays, scalars or one
of each. Equivalent to .dot()
for 1D vectors, but for 2D
and above the result is the
sum of the products over the
last axes (rather than last and
penultimate in matrix
multiplication).
m1 = array([[ 1, 2],
[-2,
0]])
m2 = array([[-1, 1],
[ 2,
3]])
m3 = inner(m1, m2)
# array([[ 1, 8],
# [ 2, -4]])
ix_(indices1,
indices2, …)
Given a list of indices for
each axis/dimension
generates a mesh of indices:
a tuple of arrays that can be
used to index the selected
rows, columns etc. of
another array. Can be used to
extract sub-matrices.
rows = [0,1]
cols = [0,2]
mesh = ix_(rows, cols)
a1 = array([[0, 1, 2],
[3,
4, 5],
[6,
7, 8]])
a2 = a1[mesh]
# array([[0, 2],
# [3, 5]])
max(array, axis)
or
a.max()
Gives the maximum values
of an array along a given
axis, or if no axis is specified
the maximum value in the
whole array.
m1 = array([[-1, 1],
[
2, 3]])
m1.max()
# 3
m1.max(axis=0)
# array([2, 3])
m1.max(axis=1)
# array([1, 3])
mean(array,
axis)
or
a.mean()
Gives the mean (average)
values of an array along a
given axis, or if no axis is
specified the mean value of
the whole array.
m1 = array([[-1, 1],
[
2, 3]])
m1.mean()
# 1.25
m1.mean(axis=0)
# array([0.5, 2.0])
mgrid[slice1,
slice2, …]
An N-dimensional grid
object which can be indexed
to generate multi-
dimensional ranges of
indices. Provides similar
functionality to range() over
multiple dimensions.
m = mgrid[0:3,0:3]
#array([[[0,0,0],
# [1,1,1],
# [2,2,2]],
# [[0,1,2],
# [0,1,2],
# [0,1,2]]])
min(array, axis)
or
a.min()
Gives the minimum values
of an array along a given
axis, or if no axis is specified
the minimum value in the
whole array.
m1 = array([[-1, 1],
[
2, 3]])
m1.min()
# -1
m1.min(axis=0)
# array([-1, 1])
m1.min(axis=1)
# array([-1, 2])
nonzero(arry)
or
a.nonzero()
Gives the positional indices
for elements in an array that
are non-zero, or true in a
Boolean sense.
a1 = array([[8, 0, 0],
[0,
0, 9]])
rows, cols = a1.nonzero()
# array([0, 1]), array([0,
2])
# Nonzero at (0,0) and
(1,2)
ones(sizes,
dtype)
Generates a new array, of
specified size, filled with
ones. The data type may be
specified, but otherwise
defaults to floating point.
The size can be an integer or
a tuple of integers, one for
ones(4, int)
# Ints: array([1, 1, 1,
1])
ones((2,3))
# 2 x 3 array
# array([[1.0, 1.0, 1.0],
each axis, specifying number
of rows, columns etc.
# [1.0, 1.0,
1.0]])
outer(arry1,
arry2)
Calculates the outer product
or tensor product of two
array vectors. The outer
product of two vectors will
create a matrix with elements
that are the product of the
elements from each vector,
where the first vector is
applied across rows and the
second across columns.
v1 = array([0,1,2])
v2 = array([7,8,9])
m = outer(v1,v2)
# array([[ 0, 0, 0],
# [ 7, 8,
9],
# [14, 16,
18]])
radians(degrees)
Converts an angle value in
degrees to radians: multiply
by π/180.
radians(120.0)
# 2.0943951023931953
ravel(arry)
or
a.ravel()
Creates a flattened, one-
dimensional version of an
array.
a = array([[0, 1, 2],
[3,
4, 5],
[6,
7, 8]])
a.ravel()
#
array([0,1,2,3,4,5,6,7,8])
reshape(arry,
sizes)
or
a.reshape(sizes)
Rearranges the elements of
an array to make a new array
with specified number of
positions along each axis
(rows, columns etc.).
a = array([1,2,3,4,5,6])
reshape(a, (2,3)) # Rows,
cols
# array([[1, 2, 3],
# [4, 5,
6]])
a.reshape(3,2)
# array([[1, 2],
# [3, 4],
# [5, 6]])
std(arry, axis)
or
a.std(axis)
Calculates the standard
deviation of the values in an
array along a specified axis.
If the axis is not specified the
standard deviation is over all
values, i.e. the array is
data = array([[0.1, 0.2,
0.4],
[1.5, 1.3, 1.0]])
data.std()
# 0.543905629069
data.std(axis=1)
flattened.
# array([0.12472191,
0.20548047])
sum(arry, axes)
or
a.sum(axes)
Calculates the summation of
the values in an array, along
a specified axis (or tuple of
axes). If no axis is specified
the summation is over all
values in the array.
data = array([[0.1, 0.2,
0.4],
[1.5, 1.3, 1.0]])
data.sum()
# 4.5
data.sum(axis=0)
# array([1.6, 1.5, 1.4])
var(arry, axis)
or
a.var(axis)
Calculates the variance of
the values in an array along a
specified axis. If the axis is
not specified the variance is
over all values, i.e. the array
is flattened.
data = array([[0.1, 0.2,
0.4],
[1.5, 1.3, 1.0]])
data.var()
# 0.295833333333
data.var(axis=1)
# array([0.01555556,
0.04222222])
vstack(arrays)
Combines a sequence (e.g.
list) of arrays into a larger
array by stacking them row-
wise, along their second axis.
For example, combines 1D
vectors into a 2D matrix.
v1 = array([0,1,2])
v2 = array([7,8,9])
m = vstack([v1, v2])
# array([[0, 1, 2],
# [7, 8,
9]])
zeros(sizes,
dtype)
Generates a new array, of
specified size, filled with
zeros. The data type may be
specified, but otherwise
defaults to floating point.
The size can be an integer or
a tuple of integers, one for
each axis, specifying number
of rows, columns etc.
zeros(5)
# Floats: 0.0, 0.0, 0.0,
0.0, 0.0
zeros(4, int)
# Ints: array([0, 0, 0,
0])
zeros((2,3))
# 2 x 3 array
# array([[0.0, 0.0, 0.0],
# [0.0, 0.0,
0.0]])
Do'stlaringiz bilan baham: |