Python Programming for Biology: Bioinformatics and Beyond



Download 7,75 Mb.
Pdf ko'rish
bet394/514
Sana30.12.2021
Hajmi7,75 Mb.
#91066
1   ...   390   391   392   393   394   395   396   397   ...   514
Bog'liq
[Tim J. Stevens, Wayne Boucher] Python Programming

k-nearest neighbours

If you can describe your data as position vectors in a feature space, and have a good way

of  calculating  the  distance  or  similarity  between  points,  then  the  k-nearest  neighbour

method can be used to classify an unknown data vector by comparing it to data vectors for

which there is a known classification. In essence this is like taking a voting poll. For an

unclassified  query  point  you  look  for  a  given  number,

2

 k,  of  nearest  neighbours  in  the



feature space that you have a classification for. You then assume that the classification of

the  query  is  the  same  as  the  majority  of  its  k  neighbours.  Implementing  this  method

successfully  is  dependent  on  having  reasonable  training  data;  you  must  have  sufficient

numbers of well-dispersed vectors of known classification so that any query is not too far

from a known data point, and one class of data should not be significantly more abundant

than  any  other,  otherwise  the  more  populous  classification  will  have  a  positive  bias  for

being a neighbour to the query. It should also be noted that this method can be fairly slow,

given  that  you  have  to  calculate  distances  to  many  classified  points;  however,  if  the

method  works  well  you  can  optimise  later,  for  example,  by  using  constructions  like  k-

dimensional trees

3

to find nearest neighbours without having to check every data point.





Download 7,75 Mb.

Do'stlaringiz bilan baham:
1   ...   390   391   392   393   394   395   396   397   ...   514




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish