Python Programming for Biology: Bioinformatics and Beyond



Download 7,75 Mb.
Pdf ko'rish
bet369/514
Sana30.12.2021
Hajmi7,75 Mb.
#91066
1   ...   365   366   367   368   369   370   371   372   ...   514
Bog'liq
[Tim J. Stevens, Wayne Boucher] Python Programming

Discrimination

Some of the computational methods presented in this chapter are used to determine which

aspects of which features best separate the data. For example, if there are many different

kinds of tests that can be performed on a person to diagnose a disease, each of the different

kinds  of  measurement  will  have  a  different  degree  of  importance  to  the  outcome.  Also,

certain  combinations  of  measurements  may  be  important  for  classification,  in  either  a

positive  or  negative  sense.  In  essence,  with  such  information  we  wish  to  determine  the

best view of the feature vectors to observe the correlations and distinctions. To take a very

simple three-dimensional example, imagine the problem was to distinguish blurred points

of  light  by  taking  photographs.  Here  you  would  not  expect  to  be  able  to  separate  the

different lights if the camera view meant that one light lay directly behind the other; the

best  separation  for  two  lights  would  be  a  view  perpendicular  to  the  line  between  them.

Generalising the problem for any feature space we would seek to find a projection (view)

of the data where differences or groups are most obvious. Implicit in this reasoning is the

tactic of mapping several different kinds of features into a simpler, flatter representation,

otherwise known as dimensional reduction.

Taking  a  photograph  of  real  objects  involves  going  from  three  dimensions  to  a  two-

dimensional  projection,  so  this  is  an  example  of  dimensional  reduction,  although  for  the

purposes of data discrimination we would not take just any view, but rather the one that

gives optimal separation. If there are only two data categories that are to be separated, we

could  draw  a  line  through  the  ‘centre’  of  one  category  to  the  other.  Although  we  know

where this line is in the feature space of the data, the line itself is only a one-dimensional

object  that  charts  the  transition  of  going  from  one  group  to  the  other.  By  transforming

multi-dimensional  data  (lots  of  features)  to  points  on  an  optimally  positioned  one-

dimensional  line  we  automatically  create  an  axis  for  separation;  a  decision  boundary

would  be  a  point  on  the  line  between  the  groups.  It  is  noteworthy  that  although

dimensional reduction can often simplify a problem involving large numbers of features,

including  giving  human  beings  the  kinds  of  graphs  and  2D  pictures  they  can  visually

appreciate,  this  simplification  is  not  a  prerequisite  for  separating  data  items.  Many

methods allow data to be grouped and separated in its original high-dimensional, feature

vector form. Where it is possible, separating the unmapped data should be considered first,

given that dimensional reduction loses information, which may obscure separation.

In  this  chapter  we  will  look  at  two  forms  of  data  discrimination  with  different

approaches.  These  are  principal  component  analysis  (PCA)  and  linear  discriminant



analysis (LDA), and either may be used to work out a best-separating projection (view) of

data  represented  as  feature  vectors.  Accordingly  they  may  also  be  used  as  a  means  of

dimensional reduction.




Download 7,75 Mb.

Do'stlaringiz bilan baham:
1   ...   365   366   367   368   369   370   371   372   ...   514




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish