Python Programming for Biology: Bioinformatics and Beyond


Mechanisms of genetic change



Download 7,75 Mb.
Pdf ko'rish
bet191/514
Sana30.12.2021
Hajmi7,75 Mb.
#91066
1   ...   187   188   189   190   191   192   193   194   ...   514
Bog'liq
[Tim J. Stevens, Wayne Boucher] Python Programming

Mechanisms of genetic change

You can think of DNA changes, and hence for RNA and protein too, as arising from one of

four  general  ways:  from  recombination  events  where  DNA  strands  exchange;  as  a

consequence  of  damage  to  DNA;  from  errors  in  the  replication  of  DNA  at  cell  division;

and  by  the  action  of  mobile  genetic  elements,  like  viruses  and  transposons.  We  will

introduce these points separately.

Recombination is the shuffling of large sections of DNA (i.e. many bases at a time) as a

result  of  crossover  between  two  different  sections  of  DNA  double  helix.  Two  regions  of

DNA come together and, in a controlled way, the two double helices are broken and joined

back together, in an exchanged manner so that the new DNA molecules are made of two

regions  from  different  origins.  There  are  two  notable  situations  where  this  occurs,  for

deliberate biological reasons. The first is during meiosis, the cell division that gives rise to

gametes (egg and sperm cells). This kind of recombination usually occurs between sister

chromosomes (i.e. the two copies of a given kind) where they share significant similarity,

just before the chromosomes separate to form eggs or sperm, which carry only one copy

of each kind of chromosome. The end result is that offspring have chromosomes that are

not  identical  to  their  parents’,  but  rather  versions  that  are  a  spliced  combination  of  the

originals. This is an important means of generating genetic variation within a species and,

because  recombination  occasionally  occurs  at  the  wrong  spot  with  an  offset  between  the

chromosomes,  is  a  means  by  which  entire  genes  get  duplicated.  The  second  notable

occurrence of recombination involves genes of antibodies, i.e. for the immune system. In

this  instance  the  recombination  is  used  to  form  a  diverse  array  of  immune  cells  each

producing different antibodies. This is part of the way that the immune response adapts to

the potentially limitless variety of invading organisms. The antibody genes contain many

alternative  coding  regions  (i.e.  exons)  in  different  groups  and  the  splicing  brought  about

by recombination effectively selects a different coding region from within each group, to

create different final exon combinations in each cell, so that it makes antibodies that bind a

different target.

DNA is a relatively inert biological molecule, which is important for its role as the store

and transmitter of inherited information. Nevertheless, there are still means by which the

chemical  structure  of  DNA  can  be  disrupted.  This  can  be  as  a  result  of  various  things

including:  high  energy  radiation  (X-rays,  gamma  rays);  ultraviolet  light;  highly  reactive

free-radical compounds, including those generated as a natural consequence of breathing

oxygen; high temperatures and chemical toxins. DNA damage is a constant part of life and

as such many repair mechanisms have evolved to fix things. Usually the damage can be

fixed  directly  by  repair  enzymes,  but  if  it  gets  too  bad  a  cell  will  often  commit  suicide.

Sometimes, however, the repair may not reproduce the original chemical structure or the

damage  may  escape  being  fixed,  so  that  when  the  DNA  is  replicated  the  base-pair

matching at that position goes awry and the sequence changes. Because DNA damage is a

somewhat  random  process  and  localised  to  small  areas  the  sequence  changes  it  creates

mostly involve only a single base pair; a single-nucleotide polymorphism. However, larger

changes  are  possible,  for  example,  when  there  are  double-stranded  DNA  breaks  that  are




joined back together in the wrong way, as can be seen in some cancer cell lines.

As hinted at in the discussion of DNA damage, the replication of DNA strands is a time

when  variations  become  consolidated.  However,  it  is  also  a  time  when  variations  can

initially  occur  because  DNA  replication  itself  is  slightly  error-prone.  This  is  important

because  it  allows  the  changes  to  feed  evolutionary  processes,  but  they  are  mistakes

nonetheless; DNA is produced where the occasional base pair doesn’t match. The reason

for this kind of mistake is because of the chemical structure of the DNA bases themselves.

The bases are in a state of structural flux; there is an exchange between the normal form

and  another  chemical  structure.  In  chemical  structure  terms  there  is  tautomerism,  an

equilibrium  between  different  double-bonded  forms  (the  double  bond  can  switch  from

C=C  to  C=N  by  the  movement  of  a  hydrogen).  While  the  standard  chemical  form  is  far

more common, the occasional brief occurrence of the alternative form version results in a

structure  where  different  base  pairs  can  form,  compared  to  the  normal  Crick-Watson

pairing (G:C, A:T). If the alternative form appears during replication the wrong base may

be incorporated into the new strand, thus giving a base-pair mismatch. In many organisms,

including humans, once the newly added base reverts to its normal form the pair mismatch

can  be  detected  and  immediately  removed  by  the  proof-reading  apparatus  of  the  DNA

replication  machinery.

1

 Occasionally,  however,  the  mismatch  still  escapes,  and  although



this is a very rare event (maybe of the order of 1 in 10

10

for mammal genomes), given a



large number of total bases (6×10

9

in a human cell), a large number of cell division events



and all the individuals of a population it will undoubtedly happen from time to time. An

escaped  base-pair  mismatch  may  still  be  repaired  by  enzymes,  but  as  either  of  the  two

bases could be replaced, to give a matching pair, the fix may either regenerate the original

sequence or consolidate a change, to give a single-nucleotide polymorphism.





Download 7,75 Mb.

Do'stlaringiz bilan baham:
1   ...   187   188   189   190   191   192   193   194   ...   514




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish