Acknowledgement. This work has been partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center 901 “On-The-Fly
Computing”.
References
1. Linux Kernel: perf: Linux Profiling with Performance Counters (2017).
https://
perf.wiki.kernel.org/index.php/Main Page
2. Eulisse, G., Tuura, L.: IgProf, the Ignominous Profiler (2013).
http://igprof.org/
3. Roehl, T.: Performance Monitoring and Benchmarking Suite (2017).
https://
github.com/RRZE-HPC/likwid/
4. Intel Corporation: Intel VTune Amplifier (2017).
https://software.intel.com/en-
us/intel-vtune-amplifier-xe
5. Nvidia Corporation: Nvidia Nsight (2017).
http://www.nvidia.com/object/nsight.
html
6. Khan, K.N., Nyb¨
ack, F., Ou, Z., Nurminen, J.K., Niemi, T., Eulisse, G., Elmer,
P., Abdurachmanov, D.: Energy profiling using IgProf. In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May 2015
7. Innovative Computing Laboratory, University of Tennessee: Performance Applica-
tion Programming Interface (PAPI) (2016).
http://icl.utk.edu/papi/
8. McCraw, H., Ralph, J., Danalis, A., Dongarra, J.: Power monitoring with PAPI
for extreme scale architectures and dataflow-based programming models. In: 2014
IEEE International Conference on Cluster Computing (CLUSTER), September
2014
9. L¨
osch, A., Knorr, C., El-Ali, A., Wiens, A.: Ampehre: Accurately Measuring Power
and Energy for Heterogeneous Resource Environments (2017).
http://ampehre.
uni-paderborn.de/
10. Intel Corporation: Intelligent Platform Management Interface (IPMI), IPMI
Technical Resources (2015).
https://www.intel.com/content/www/us/en/servers/
ipmi/ipmi-technical-resources.html
11. Nvidia Corporation: Nvidia Management Library (NVML) (2017).
https://
developer.nvidia.com/nvidia-management-library-nvml/
12. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer Manuals,
October 2017.
https://software.intel.com/en-us/articles/intel-sdm/
13. Vlasenko, D.: BusyBox: The Swiss Army Knife of Embedded Linux (2017).
https://
busybox.net/
14. L¨
osch, A., Beisel, T., Kenter, T., Plessl, C., Platzner, M.: Performance-centric
scheduling with task migration for a heterogeneous compute node in the data cen-
ter. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 912–917, March 2016
15. L¨
osch, A., Platzner, M.: reMinMin: a novel static energy-centric list scheduling
approach based on real measurements. In: 2017 IEEE 28th International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP), pp.
149–154, July 2017
Do'stlaringiz bilan baham: |