Precise asymptotics in some strong limit theorems for multidimensionally indexed random variables



Download 0,84 Mb.
bet3/10
Sana18.07.2022
Hajmi0,84 Mb.
#822655
1   2   3   4   5   6   7   8   9   10
Bog'liq
ГУТ АЛЛАН ГАФУРОВ ИШЛАРИ(1)

Remark 1.3. We observe that Theorem 2 “converges” to Theorem 3 with r=2 as α↗2.As pointed out in [10], there is no hope for a result with p=2 in view of the central limit theorem. Following is the generalization of theirTheorem 3.
Theorem 4. Suppose thatEX=0, thatE[X2(log(1+|X|))d−1]<∞, setσ2=EX2and let N denote a standard normal random variable. For 0⩽δ⩽1,

Remark 1.4. For δ=1 the moment assumption is also necessary for the sum to be finite; see [8, Theorem 3.4].The case when r/p−2 is a nonnegative integer in Theorem 3 and Theorem 4 has earlier been investigated by Łagodowski and Rychlik [24] in a more general context. The i.i.d. case is sketched there as a corollary; cf.Section 8.2 for further details.A natural next step following Theorem 4 is to consider iterated logarithms. Following is the extension to the case d⩾2 in [11, Theorem 2].
Theorem 5. Suppose thatEX=0, that for someδ>1, and setEX2=σ2Then

Remark 1.5. By modifying the proofs in [8], one can show that the sum is finite for  , and by using standard tail estimates for the normal distribution it is easily seen that the sum diverges in this case for  .The plan of the paper is as follows. Section 2 contains some preliminary lemmas and tools. The proofs of the theorems, follow the same main general route as those of the papers cited above. They consist of a number of propositions, which are put together via the triangle inequality, and are given in 3,4, 5, 6 and 7. Section 8 contains some corollaries and comments on related work.Throughout the proofs ofTheorem 1, Theorem 2, Theorem 3 and Theorem 4 (and the lemmas that we need for the proofs of them) we letε<1/4 (say). In Theorem 1 and Theorem 2 we also assume that the common distribution F belongs to the domain of attraction as described in [28], Section 3; namely, we know that   for suitable bn>0, where G is a stable distribution with exponent α such that   For x⩾0, putΨ(x)=1−G(x)+G(−x) and Ψ(x)=1−G(x)+G(−x). Throughout, C shall denote absolute positive constants, at times also depending on existing moments of the summands, and possibly varying from place to place, [x] denotes the largest integer ⩽x, and ∼ between expressions means that the limit of their ratio is equal to one.

Download 0,84 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish