Practical Deep Learning Examples with matlab


Common Semantic Segmentation Applications



Download 5,05 Mb.
Pdf ko'rish
bet10/19
Sana22.07.2022
Hajmi5,05 Mb.
#836233
1   ...   6   7   8   9   10   11   12   13   ...   19
Bog'liq
deep-learning-practical-examples-ebook

Common Semantic Segmentation Applications
• Autonomous driving: for identifying a drivable path for cars by separating the road 
from obstacles like pedestrians, sidewalk, poles, and other cars
• Industrial inspection: for detecting defects in materials, such as wafer inspection
• Satellite imagery: for identifying mountains, rivers, deserts, and other terrain 
• Medical imaging: for analyzing and detecting cancerous anomalies in cells 


17 | Practical Deep Learning Examples with MATLAB
Semantic Segmentation Network Architecture
As we saw in examples 1 and 2, a traditional CNN takes an image
passes it through the layers of the network, and then outputs a final 
class.
A semantic segmentation network builds on this process with an
up-sampling network, which has an architecture similar to a
reversed CNN.
This series of new layers 
upsamples 
the result of the pretrained network 
back into the image. The result is an image with every pixel assigned a 
classification label.


18 | Practical Deep Learning Examples with MATLAB
1. Importing a Pretrained Network
In this example we want to build a network that an autonomous driving 
system can use to detect clear road space, driving lanes, and sidewalks. 
The steps are as follows: 
1. Import a pretrained network.
2. Load in the dataset.
3. Set up the network.
4. Train the network.
5. Evaluate the network’s accuracy.
We could train a network from scratch, but for this example, we’ll use 
a pretrained network—as we saw in the previous example, we can test 
a pretrained network on images in the categories that it was originally 
trained on without reconfiguring it. 
Our pretrained network is the VGG-16. Used in the 
ImageNet
Large-Scale Visual Recognition Challenge
 (ILSVRC), VGG-16 is trained 
on more than a million images and can classify images into 1000 ob-
ject categories. 
Importing the VGG-16 takes just one line of MATLAB code:

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish