Вариант №30
На карточках написаны цифры 1,2,3,4,5,6,7. Наудачу взяли две карточки. Какова вероятность, что одно число будет меньше трех, а другое больше трех?
Устройство секретного замка включает в себя 4 ячейки. В первой ячейке осуществляется набор одной из четырех букв A, B, C, D, в трех остальных – одной из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (цифры могут повторяться). Чему равна вероятность того, что замок будет открыт с первой попытки?
На отрезке АВ длины l поставлена наудачу точка М. Какова вероятность того, что расстояние этой точки от середины отрезка меньше, чем расстояние этой точки до ближайшего края.
В ящике 12 красных и 4 синих пуговиц. Вынимают наугад две пуговицы. Какова вероятность того, что пуговицы будут одноцветными?
В ящике лежат 10 красных, 8 синих и 5 зеленых шаров; шары отличаются только цветом. Наудачу вынимают два шара. Какова вероятность того, что оба вынутых шара окажутся одного цвета?
Рабочий обслуживает три станка, вероятность того, что в течение часа для первого станка не потребуется помощь рабочего равна 0,9, для второго – 0,8, для третьего – 0,7. Найти вероятность того, что, по крайней мере, для двух станков не потребуется помощь рабочего.
Вероятность попадания в мишень для данного стрелка равна 0,7. Стрелок делает два выстрела по мишени. Найти вероятности следующих событий:
а) стрелок попадет 2 раза;
б) попадет один раз;
в) попадет хотя бы один раз.
Заготовки поступают из двух бункеров: 70% из первого и 30-% из второго. При этом материал первого бункера имеет 10% брака, а второго – 20%. Какова вероятность того, что наудачу взятая заготовка бракованная.
Вся продукция проверяется двумя контролерами. Вероятность того, что изделие попадет на проверку к первому контролеру, равна, 0,35, а ко второму – 0,65. Вероятность пропустить нестандартные изделия для первого контролера равна 0,03, для второго – 0,01. Взятое наудачу изделие с маркой «стандарт» оказалось бракованным. Какова вероятность, что изделие проверялось первым контролером?
Вероятность того, что пассажир опоздает к поезду, равна 0,01. Найти наиболее вероятное число опоздавших из 500 пассажиров.
Отдел технического контроля проверяет 900 изделий на стандартность. Вероятность брака равна 0,1. Найти вероятность того, что в данной партии окажется не более 50 бракованных деталей.
Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти число испытаний , при котором с вероятностью 0,9876 можно ожидать, что относительная частота появления события отклоняется от его вероятности по абсолютной величине не более чем на 0,04.
Определить надежность схемы, если Pi – отказ i – го элемента
Do'stlaringiz bilan baham: |