Intellektual tizimlar


Neyron tarmoqlarni o‘rgatish usullari



Download 1,79 Mb.
Pdf ko'rish
bet60/104
Sana04.06.2023
Hajmi1,79 Mb.
#948714
1   ...   56   57   58   59   60   61   62   63   ...   104
Bog'liq
Intelektual tizimlar

10.4. Neyron tarmoqlarni o‘rgatish usullari. 
O‘rgatish jarayonda vaznli bog‘lanish koeffitsiyent, chegara va tuzilma kabi 
NT parametrlar qiymatlari sozlanadi (modifikatsiyalashadi). Shu holatda mazkur 
parametrlarni boshlang‘ich qiymatlari odatda tasodifiy ravishda beriladi. 
Tasnifni eng muhim belgisi (ko‘rsatgichi) tashqi muxit bilan o‘zaro xarakatlarini 
turi, xususiyati bo‘ladi. O‘rgatish jarayonda tashqi muxitdan keladigan axborotni 
miqdori va sifati (semantikasi, ma’nosi)ga ko‘ra supervizorli (supervised learning), 
nosupervizorli (unsupervised learning) va tasdiqlash bilan (reinforcement learning)
o‘rgatish algoritmlar ajratiladi.
NT o‘rgatish usullar tasnifi. 
Supervizoli usulda oldindan o‘rgatish juftlarni hammasidan iborat bo‘lgan
o‘rgatish to‘plam shakllanadi. O‘rgatish jufti X kirish vektori va unga muvofiq 
bo‘lgan Y chiqish vektorlar qiymatlari bilan ifodalanadi. Shu holatda har bir xi 
kirish vektorni i- komponentasi i- kirish neyronga keladigan signalga muvofiq 
bo‘ladi. Shunga uxshash har bir yj chiqish vektorni j- komponentasi j-chiqish 
neyronda paydo bo‘ladigan signalga muvofiq bo‘ladi. 
O‘rgatish jarayonda chiqish vektorlarni berilgan kirish vektorlarni 
qiymatlarga muvofiq bo‘lgan joriy haqiqiy qiymatlarini o‘rgatish to‘plamda 
oldindan berilgan chiqish qiymatlardan og‘ishlari hisoblanadi. Bu og‘ishni 
qiymatiga muvofiq NT parametrlari mazkur og‘ishlar qiymatlarini minimum 
(berilgan) 
kattaligiga 
olib 
keltirish 
uchun 
to‘g‘irlanadi 
(sozlanadi, 
modifikatsiyalanadi). Supervizorli o‘rgatish algoritmlarni ichida eng keng tarqalgan 
xatolarni (to‘lqinlarni) orqaga traqatish algoritmi (error backpropagation) bo‘ladi. 
Nosupervizorli algoritm (usul)larda o‘rgatish to‘plami faqat kirish vektorlar 
majmuisini ichiga oladi. Qo’llanil adigan shu holatda raqobatli o‘rgatish algoritmi 
(competitive learning) klasterlash masalalarni yechish uchun NT parametrlarni 
sozlaydi. O‘rgatish paytda tegishli klasterga kiradigan faol bo‘lgan kirish 
komponenta (neyron)lar va shu klasterni tavsiflaydigan (aks etadigan) faol bo‘lgan 
chiqish neyron orasidagi bog‘lanish vaznlar qiymatlari maksimal darajada 


88 
ko‘paytiriladi. Shu bilan birga ushbu chiqish neyronni faol bo‘lmagan kirish 
neyronlar bilan bog‘lanish vaznlar qiymatlari kamaytiriladi. 
Tasdiqlash bilan o‘rgatish usul (algoritm)lar ko‘rib o‘tilgan ikkisini o‘rtasida 
turadi. Bu usulni asosiy printsipi tashqi muxitdan (o‘qituvchidan) keladigan 
“tasdiqlash - rad qilish “ yoki “rag‘batlantirish - jazolash” (reward/penalty) signalni 
mavjudligi bo‘ladi. Bunday o‘rgatish jarayonda navbatdagi kirish vektori berilganda 
NT xarakati qoniqarli bo‘lsa tasdiqlash («+1») signal, aks holda - rad qilish («0» 
yoki «-1») signal beriladi. Shu holatda tarmoq tasdiqlash signallarni olishini 
balandroq tezligini ta’minlash maqsadda vaznli koeffitsiyent qiymatlarini tegishli 
ravishda o‘zgartiradi. Shu tezlik qiymati maqbul darajasiga yetmaguncha o‘rgatish 
jarayoni davom etadi. 
Tuzilmali o‘rgatish usullar endi rivojlana boshladi. Ular murakkab 
masalalarni yechish uchun mo‘ljallangan NTni qurishga imkoniyat beradi. 
Kirishlarga quyiladigan talablar bo‘yicha misol (timsol, o‘xshashlik)lar va 
yagona misol (buyruqqa asoslangan) bo‘yicha o‘rgatish usullar ajratiladi. Shu 
holatda tadqiq qilinadigan ob'yektlarni tavsiflaydigan etalon (misol, timsol) to‘plami 
shakllanadi. NT parametrlari shunday qilib sozlanadiki, kirish belgilarni tegishli 
qiymatlarda faqat mazkur belgilarga ega bo‘lgan berilgan etalonga muvofiq bo‘lgan 
chiqish neyronlar aktivlanishi kerak.
Stoxastik o‘rgatish usullar ehtimolli aktivlash qoidalarga, determinlik (aniq 
belgilangan) usullar - determinlik qoidalarga asoslangan. 

Download 1,79 Mb.

Do'stlaringiz bilan baham:
1   ...   56   57   58   59   60   61   62   63   ...   104




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish