Author Contributions:
All authors designed the content and wrote this review. All authors have read and agreed
to the published version of the manuscript.
Funding:
This research was supported by the Chung-Ang University Research Scholarship Grants in 2020.
This work was further supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (No. 2020R1G1A1101146).
Acknowledgments:
This research was supported by the Chung-Ang University Research Scholarship Grants
in 2020.
Conflicts of Interest:
The authors declare no conflict of interest.
References
1.
Armand, M.; Tarascon, J.M. Building better batteries.
Nature
2008
,
451
, 652–657. [
CrossRef
] [
PubMed
]
2.
Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies.
Nature
2001
,
414
, 332–337.
[
CrossRef
] [
PubMed
]
3.
Goodenough, J.B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective.
J. Am. Chem. Soc.
2013
,
135
,
1167–1176. [
CrossRef
] [
PubMed
]
4.
Lee, J.T.; Jo, C.; De Volder, M. Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh
areal loading.
Proc. Natl. Acad. Sci. USA
2020
,
117
, 21155–21161. [
CrossRef
]
5.
Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future.
Mater. Today
2015
,
18
,
252–264. [
CrossRef
]
6.
Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State
of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030.
Energies
2017
,
10
, 1314. [
CrossRef
]
7.
Pillot, C. The rechargeable battery market and main trends 2016–2025. In Proceedings of the 33rd Annual
International Battery Seminar & Exhibit, Fort Lauderdale, FL, USA, 20 March 2017; pp. 35–41.
8.
Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane
separators for rechargeable lithium-ion batteries.
Energy Environ. Sci.
2014
,
7
, 3857–3886. [
CrossRef
]
9.
Hao, J.; Lei, G.; Li, Z.; Wu, L.; Xiao, Q.; Wang, L. A novel polyethylene terephthalate nonwoven separator
based on electrospinning technique for lithium ion battery.
J. Membr. Sci.
2013
,
428
, 11–16. [
CrossRef
]
10.
Orendor
ff
, C.J.; Lambert, T.N.; Chavez, C.A.; Bencomo, M.; Fenton, K.R. Polyester separators for lithium-ion
cells: Improving thermal stability and abuse tolerance.
Adv. Energy Mater.
2013
,
3
, 314–320. [
CrossRef
]
11.
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for
rechargeable batteries.
Energy Environ. Sci.
2014
,
7
, 513–537. [
CrossRef
]
12.
Liu, B.; Zhang, J.-G.; Xu, W. Advancing Lithium Metal Batteries.
Joule
2018
,
2
, 833–845. [
CrossRef
]
13.
Jeong, J.; Chun, J.; Lim, W.-G.; Kim, W.B.; Jo, C.; Lee, J. Mesoporous carbon host material for stable lithium
metal anode.
Nanoscale
2020
,
12
, 11818–11824. [
CrossRef
]
14.
Whittingham, M.S. Electrical energy storage and intercalation chemistry.
Science
1976
,
192
, 1126–1127.
[
CrossRef
] [
PubMed
]
15.
Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and
lithiated graphite anodes in liquid electrolyte solutions.
Solid State Ion.
2002
,
148
, 405–416. [
CrossRef
]
16.
Aurbach, D.
Nonaqueous Electrochemistry
; CRC Press: Boca Raton, FL, USA, 1999.
17.
Brandt, K. Historical development of secondary lithium batteries.
Solid State Ion.
1994
,
69
, 173–183. [
CrossRef
]
18.
Zhamu, A.; Chen, G.; Liu, C.; Ne
ff
, D.; Fang, Q.; Yu, Z.; Xiong, W.; Wang, Y.; Wang, X.; Jang, B.Z.
Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells.
Energy Environ. Sci.
2012
,
5
, 5701–5707. [
CrossRef
]
19.
Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries.
Nat. Nanotechnol.
Do'stlaringiz bilan baham: |