Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet380/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   376   377   378   379   380   381   382   383   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

IntroductIon
We solved first-order and second-order circuits using the differential equation model in earlier 
chapters. Differential equation model can be used to solve multi-mesh, multi-node circuits containing 
R, L, C, M
, linear dependent sources and independent sources too.
A linear time-invariant circuit containing 
R

L

C

M
, linear dependent sources and a single input 
source is described by a linear ordinary differential equation with constant coefficients. The differential 
equation for such a circuit can be expressed in a standard format as below.
d y
dt
a
d
y
dt
a
dy
dt
a y
b
d x
dt
b
d
x
dt
n
n
n
n
n
m
m
m
m
m
m
+
+ +
+
=
+






1
1
1
1
0
1
1
1
++ +
+
b
dx
dt
b x
1
0
Chapter 
13


13.2
Analysis of Dynamic Circuits by Laplace Transforms
The variable 
y
is any circuit voltage or current variable chosen as the 
describing variable
for the 
circuit and 
x
is the input source function. Standard mesh analysis or nodal analysis technique along 
with variable elimination will help us to arrive at this equation. However, the variable elimination 
involved can be considerably tricky in the case of large circuits containing many energy storage 
elements. This is a serious shortcoming of time-domain analysis by differential equation model. 
The 
order 
of a circuit is equal to the order of the differential equation that describes it. Order of 
the circuit will be equal to the total number of independent inductors and capacitors – (number of all-
inductor nodes 

number of all-capacitor loops in the circuit).
The order of a circuit depends also on the kind and location of input. The same circuit will have 
different order if voltage source input is replaced by current source input.
The coefficients 
a
n
-
1

a
0
and 
b
m

b
0
are decided by the circuit parameters. They are real-valued. 
a
n
-
1

a

are positive real numbers if the circuit is passive 
i.e.,
if it contains only 
R

L

C
and 
M
. They 
can be zero or negative real numbers if the circuit contains dependent sources. 
b
m

b
0
can be positive 
or negative or zero in all circuits.
The format of left-side of the differential equation that describes a circuit is independent of the 
particular circuit variable chosen as the describing variable in general. That is, 
a
n
-
1

a
0
will remain 
the same even if some other circuit variable is used as the variable
 y
. However, 
b
m

b
0
will depend on 
the variable chosen.
This 
n
th
-order differential equation requires 

initial values for solving it if the input function is 
known only for a range of values of 
t
rather than over entire 
t
-axis. The required initial values are 
y
dy
dt
d y
dt
d
y
dt
n
n
( ),
,
,
(
)
(
)
(
)
0
0
2
2
0
1
1
0
+


+
+
+

The differential equation can be solved using 
x
(
t
) for 
t

0

and these initial values.
The initial values available in a circuit are the initial current values for all inductors and initial 
voltage values for all capacitors. It requires considerable effort to translate these values into the 
required initial values in the case of a circuit containing many energy storage elements. This is another 
serious shortcoming of the differential equation approach.
Laplace transformation technique converts a linear differential equation with constant coefficients 
into an algebraic equation. Thus, the task of solving a collection of simultaneous differential equations 
will be reduced to a much simpler task of solving a set of simultaneous algebraic equations involving 
Laplace transforms of input signals and Laplace transform of desired output signal. This set of 
equations may be solved for the Laplace transform of output and the time-function may be obtained 
by inverting the transformation. Moreover, we will see later that the initial conditions specified for 
inductor currents and capacitor voltages can be used directly in Laplace transform method of solving 
a circuit. This makes it sound as if the technique of Laplace transforms is just a mathematical artifice 
for solving linear differential equations. Just as Logarithm is not a mathematical artifice for converting 
multiplication into addition, Laplace transform is not just a mathematical artifice to make solution of 
differential equations easier.
There is a very compelling reason why we take Laplace transform of a function. The reason is that 
(i) complex exponential signals are eigen functions of linear time-invariant circuits, (ii) linear time-
invariant circuits obey superposition principle and (iii) Laplace transform expresses a given arbitrary 
input function as a sum of complex exponential signals.
Therefore, we commence our study of Laplace transform method of solving a circuit by examining 
the circuit response to a complex exponential input. 


Circuit Response to Complex Exponential Input 
13.3

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   376   377   378   379   380   381   382   383   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish