Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  change in Inductor current Function versus Area under Voltage Function



Download 5,69 Mb.
Pdf ko'rish
bet91/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   87   88   89   90   91   92   93   94   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

3.2.2 
change in Inductor current Function versus Area under Voltage Function 
The relation between current and voltage of an inductor is reproduced in the following:
v t
L
di t
dt
i t
L
v t dt
t
( )
( )
( )
( )
=
=
−∞

and
1
(3.2-1) 
Consider two time instants t
1
and t
2
. Applying the integral form of v–i relationship we get,
i t
i t
L
v t dt
L
v t dt
L
v t dt
t
t
t
t
( )
( )
( )
( )
( )
2
1
1
1
1
2
1
1
2

=

=
−∞
−∞



(3.2-2) 
www.TechnicalBooksPDF.com


3.12
Single Element Circuits
Thus the change in inductor current is given by (1/L) 
× 
area under voltage function between 
the two instants under consideration. This is also expressed as 

i
L
=
V-s
where 
D
i is the increase 
in inductor current i(t) over [t
1
, t
2
] and V-s is the area under v(t) in the same interval. Therefore, 
i t
i t
i
i t
L
( )
( )
( )
2
1
1
=
+
=
+

V-s
. We can also relate the V-s product to change in flux linkage in the 
inductor. In fact, the V-sec product itself is the change in flux linkage since 
Dy
 
=
 L
D

=
 area under 
voltage function (V-s). Therefore, V-s and Wb-T are two units for the same quantity.
We can calculate only change in i(t) given the v(t) unless v(t) is given for (
-∞
t] interval. We can 
find the absolute instantaneous value of i(t) if we know all the voltage applied to inductor from infinite 
past to the present instant. However, we need not insist on being given the v(t) from 
-∞
itself. It is 
enough that we know the area under v(t) from 
-∞
to some instant, say t 
=
t
0
, and v(t) itself from that 
instant onwards. This is so because we can split the integral in Eqn. 3.2-2 as shown in the following:
i t
L
v t dt
L
v t dt
L
v t dt
t
t
It
t
t
( )
( )
( )
( )
=
=
+
−∞
−∞



1
1
1
0
0
0
(3.2-3) 
Obviously, the first term on the right-hand side is the inductor current value at t
0
. Therefore, we can 
work out inductor current at an instant if we know its value at some reference instant and the voltage 
function applied to it from that reference instant onwards. This reference instant is usually set as t 
=

in analysis of circuits and the value of inductor current at t 
=
0 is termed as initial condition of inductor.
Change in inductor current over [
t
1

t
2
], 
D
i
=
(Area under inductor voltage over [
t
1

t
2
])/L.
(
i
(
t
) at 
t
=
t
2
) is (
i
(
t
) at 
t
=
t
1
)

D
I
i
(
t

=
I
0

(Area under inductor voltage over [0, 
t
])/
L
, where 
I
0
is the current in the 
inductor at 
t
=
0 and is called initial condition of the inductor.
With reference to Fig. 3.2-1, the area under v(t) between t
a
and t
b
is 1.443 V-s. The inductance 
value is 1H. And, it is shown in the figure that all the three possible i(t) waveforms undergo a change 
by –1.443 A in that interval, clearly demonstrating the relation between change in inductor current 
and V-s product dumped into the inductor during the relevant time interval. The voltage waveform in 
Fig. 3.2-1 is known only for t 

0. The three current curves shown in the figure represent three possible 
initial values for the inductor current at t 
=
0. The respective initial current values can be read off the 
curves at t 
=
0.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   87   88   89   90   91   92   93   94   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish