Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  series connection of resistors



Download 5,69 Mb.
Pdf ko'rish
bet85/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   81   82   83   84   85   86   87   88   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

3.1.1 
series connection of resistors
Consider the series connection of n resistors R
1
, R
2
, … R
n
as in Fig. 3.1-1.
+
R
1
v
1
(
t
)
v
2
(
t
)
v
n
(
t
)
v
(
t
)
i
(
t
)
R
2
R
n
i
(
t
)
+
+
+
+
+






i
(
t
)
v
(
t
)
v
(
t
)
R
eq
Fig. 3.1-1 
Series connection of resistors and its equivalent
The current in a series circuit has to be a common variable. This is evident if we apply KCL at the 
junction between one resistor and the next. Therefore, there is only one current variable and that is i(t
as shown in Fig. 3.1-1. Applying KVL in the loop and employing the element relationship of a linear 
resistor, we get
v t
v t
v t
v t
t
i e
v t
R i t
R i t
n
( )
( )
( )
( )
. .,
( )
( )
( )
=
+
+ +
=
+
1
2
1
2
for all
++ +
=
+
+ +
[
]
R i t
t
i e
v t
R
R
R i t
t
i
n
n
( )
. .,
( )
( )
.
for all
for all
1
2
ee
v t
R i t
t
R
R
k
k
n
.,
( )
( )
=
=
=

eq
eq
for all
where
1
(3.1-1)
Thus, the entire series connection can be replaced by a single resistor of resistance value equal to 
sum of resistance values of all the resistors in series. Further,
www.TechnicalBooksPDF.com


The Resistor 
3.3
v t
v t
v t
v t
t
v t v t
v t
R
n
n
( )
( )
( )
( )
( ): ( ): : ( )
=
+
+ +
=
1
2
1
2
1
for all 
and
::
:
:
. .,
( )
( )
( )
R
R
i e
v t
R
R
v t
R
R
v t
j
n
n
j
j
k
k
n
j
2
1
1
=
=
=
=

eq
for
to
(3.1-2)
Moreover,
p t
v t
v t
v t i t
t
v t i t
v t i t
n
( )
( )
( )
( ) ( )
( ) ( )
( ) ( )
=
+
+ +
[
]
=
+
1
2
1
2
for all
++ +
=
+
+ +
v t i t
t
p t
p t
p t
p t
p t
n
n
( ) ( )
( )
( )
( )
( ):
( )
for all
and
1
2
1
2
:: : ( )
:
:
:
. .,
( )
( )
( )
p t
R R
R
i e
p t
R
R
p t
R
R
p t
n
n
j
j
k
k
n
j
=
=
=
=

1
2
1
eq
for
to
and
eq
j
n
p t
p t
i t
R
R i t
v
k
k
n
k
k
n
=
=
=
[ ]
=
[ ]
=
=
=


1
2
1
1
2
( )
( )
( )
( )
(( )
t
R
[ ]
2
eq
(3.1-3)
The total voltage in a series combination divides in proportion to resistance value across 
various resistors. Since current is common and voltage is proportional to resistance 
value, the power delivered to individual resistor is also in proportion to its resistance 
value.
3.1.2 
Parallel connection of resistors
Consider the parallel connection of n resistors R
1
, R
2
, … R
n
in Fig. 3.1-2. 
v
(
t
)
v
(
t
)
i
(
t
)
R
eq
i
1
(
t
)
i
2
(
t
)
i
n
(
t
)
i
(
t
)
R
1
R
2
R
n

+

+
Fig. 3.1-2 
Parallel connection of resistors and its equivalent
The voltage across the parallel combination is the common variable. This follows from applying 
KVL in the loops formed by parallel connection. Applying KCL at the positive node of voltage source 
and using element equations of resistors, we get,
www.TechnicalBooksPDF.com


3.4
Single Element Circuits
i t
i t
i t
i t
t
i e
i t
G v t
G v t
n
( )
( )
( )
( )
. .,
( )
( )
( )
=
+
+ +
=
+
1
2
1
2
for all
++ +
=
+
+ +
[
]
G v t
t
i e
i t
G
G
G i t
t
i e
n
n
( )
. .,
( )
( )
. .
for all
for all
1
2
,,
( )
( )
v t
G i t
t
G
G
k
k
n
=
=
=

eq
eq
for all
where
or equivalently 
1
eq
1
1
1
R
R
k
k
n
=
=

(3.1-4)
Hence, the entire parallel combination can be replaced by a resistor with a conductance value equal 
to sum of conductance values of all resistors in the parallel combination as far as the vrelationship 
is concerned. Further,
i t
i t
i t
i t
t
i t i t
i t
n
n
( )
( )
( )
( )
( ): ( ): : ( )
=
+
+ +
1
2
1
2
for all
and 
==
=
=
=
=

G G
G
i e i t
G
G
i t
G
G
i t
j
n
j
j
k
k
n
j
1
2
1
1
:
:
:
. .,
( )
( )
( )
eq
for
to
n
(3.1-5)
The total current in a parallel combination divides among the various resistors in 
proportion to their conductance values. Since voltage is common and current is 
proportional to conductance value, the power delivered to individual resistor is also in 
proportion to its conductance value.
p t
i t
i t
i t v t
t
i t v t
i t v
n
( )
( )
( )
( )
( )
( ) ( )
( ) (
=
+
+ +
[
]
=
+
1
2
1
2
for all
tt
i t v t
t
p t
p t
p t
p t
p
n
n
)
( ) ( )
( )
( )
( )
( ):
+ +
=
+
+ +
for all
and
1
2
1
22
1
2
( ): :
( )
:
:
:
t
p t
G G
G
n
n
=
(3.1-6a)
i e
p t
G
G
p t
j
n
p t
p t
v t
j
j
k
k
. .,
( )
( )
( )
( )
( )
=
=
=
=
[ ]
=
eq
for
to
and
1
2
11
1
2
2
2
n
k
k
n
G
G
v t
v t
R
R i t


=
=
[ ]
=
[ ]
=
[ ]
eq
eq
eq
( )
( )
( )
(3.1-7b)
A frequently occurring important special case in parallel combination is the one involving two 
resistors. The equivalent resistance and conductance as well as the current division relations are 
marked in Fig. 3.1-3 for this important special case.
www.TechnicalBooksPDF.com


The Resistor 
3.5
i
(
t
)
i
(
t
)
i
(
t
)
v
(
t
)
R
1
G
2
G


G
2
i
2
(
t
) = 
R
2
R
1
R


R
2
R
1
R
2
R


R
2
=
i
(
t
)
i
(
t
)
G
1
G


G
2
i
1
(
t
) = 
R
2
R


R
2
=
G
eq

G
1

G
2
R
eq 

+

Fig. 3.1-3 
Current division in a two-resistor parallel connection
example: 3.1-1
Find R in the circuit in Fig. 3.1-4 such that v
0
is zero.
Solution
This circuit has two series combinations of resistors connected 
across the DC source. We take the negative of the DC source as the 
common reference point. The potential of node between 10 
W
and 
25 
W
resistors will be given by voltage division principle in series 
combination.
The potential of the node marked 
+ =
24 
× 
25/(25 

10) V. But we do not really need to calculate 
this.
We want the potential difference v
0
to be zero. Therefore, the potential of the junction between 
30 
W
and R with respect to the negative of the DC source must be same as the potential of the junction 
between 10 
W
and 25 
W
. Therefore, R/(30

R
=
25/35 

R 
=
75 
W
. Note that the value of R is 
independent of the DC source value.
example: 3.1-2
Two resistors in series combination can be used to create a 
voltage lower than the supply voltage by voltage division. Such 
an arrangement is a potential divider. This arrangement is used for 
making a variable DC voltage from a fixed DC supply by making 
one of the resistors a variable one. This arrangement is widely 
employed in electronic circuits. One such fixed potential divider 
is shown in Fig. 3.1-5. (i) What is the output voltage when there is 
no load connected across the output, i.e., R 
=

? (ii) What is the 
minimum value of R if the output voltage is not to fall below 95% 
of the value it has when there is no load connected?
Solution
(i) The output when no load is connected 
=
25 V 
× 
1 k 
W
/10 k 
W
=
2.5 V
Fig. 3.1-4 
Circuit for 
Example 3.1-1
24 V
v
o
R
10 

25 

30 

+
+


25 V
v
o
R
9 k

1 k

+

Fig. 3.1-5 
Circuit for 
Example 3.1-2
www.TechnicalBooksPDF.com


3.6
Single Element Circuits
(ii) When R is connected, the parallel combination of R and 1 k 
W
will be less than 1 k 
W
and the 
voltage division ratio will be less than 0.1. This results in an output lower than 2.5 V. We want it 
to be more than 0.95 
× 
2.5 
=
2.375 V.
25
9
2 375
22 625
21 375
0 945
X
X
X
X
k
X
+





.
.
.
.

But is the parallel combination of and 
R
k
R
R
R
R
R
1
1
0 945
0 945
0 945
17


+

⇒ ≥
+
⇒ ≥
.
.
.
.22
k

Therefore, the load resistor must be greater than 17.2 k 
W
. This implies that we can draw 

140 
m

before potential divider output falls by more than 5% of its open-circuit output value.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   81   82   83   84   85   86   87   88   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish