Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet197/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   193   194   195   196   197   198   199   200   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

6.8 
ProBlemS
1. A periodic waveform is the sum of three sinusoidal waveforms of period T, 0.5T and 0.2T 
respectively. Will this periodic waveform preserve its waveshape when differentiated and 
integrated?
2. What is the amplitude of v(t
=
5 sin
w
t – 3 cos
w
t and what is its phase in degrees with respect to 
v
1
(t
=
4 sin(
w
t

p
/5)?
3. Is the composite waveform v(t
=
2sin
w
t 
+
3cos

2
w
t periodic? If yes, what is its period?
4. Is the composite waveform v(t
=
2 sin200
p
 t 
+
4 cos(200.0001
p
 t – 45
°
) periodic? If yes, what is 
its period and cyclic frequency?
5. The voltage across a linear load is v(t
=
100 sin(100
p
 t 
-
25
°
) V. If the load current i(t) is found 
to lag v(t) by 36
°
and i(0) is 2 A find i(t) as a function of time.
6. What is the phase of the first derivative of a sinusoidal waveform with respect to the original 
waveform?


6.36
Power and Energy in Periodic Waveforms 
7. What is the phase of the indefinite integral of a sinusoidal waveform with respect to the original 
waveform?
8. If v
1
(t
=
V

sin 
w
t and v
2
(t
=
V
2
sin (
w
t 

q
), what is the value of 
q
such that (i) v
1
(t
+
v
2
(t) has 
a minimum amplitude, (ii) v
1
(t
+
v
2
(t) has a maximum amplitude and (iii) v
1
(t
+
v
2
(t) has an 
amplitude of (V
1
+
V
2
)/2.
9. If v
1
(t
=
V

sin 
w
t, v
2
(t
=
V
2
sin (
w
t 

q
) and v
3
(t
=
v
1
(t
+
v
2
(t
=
V
3
sin (
w
t 

q
), find 
q
such that 
(V
1,
V
2
V
3
) is a Pythagorean triplet and find 
f
under this condition in terms of V
1
and 
2
.
10. Derive an expression for phase angle of v
2
(t) with respect to v
1
(t) if v
1
(t
=
sin 
w
t 
+
b cos 
w
t and 
v
2
(t
=
sin 
w
t 
+
d cos 
w
t.
11. Find the amplitude, frequency, angular frequency and phase of the following sinusoidal functions 
of time.
x t
t
t
( )
sin
cos(
/ )
=
+

10
500
5
500
5
p
p
p
x t
t
t
( )
sin(
)
cos(
)
=
− ° +
+ °
7
120
50
5
120
30
p
p
x t
t
t
t
( )
cos(
)
cos(
)
sin(
/ )
=
+
+ ° −
+
7
50
2
50
30
3
50
4
p
p
p
p
12. Find the phase of x(t) and y(t) with respect to a sin
w
t function, phase difference between x(t) and 
y(t) and the lead/lag relationship between them for the following cases:
(i) 
x t
t
y t
t
( )
cos
( )
sin(
)
=
=
− °
3
57
3
57
15
p
p
(ii) 
x t
t
y t
t
( )
cos(
/ )
( )
sin(
)
=

=
+ °
3
7
7
3
7
15
p
p
p
(iii) 
x t
t
y t
t
( )
cos(
/ )
( )
sin(
)
=

=
+ °
3
7
7
3
7
15
p
p
p
(iv) 
x t
t
t
y t
t
t
( ) sin
cos(
/ )
( ) cos
sin(
)
=
+

=

+ °
p
p
p
p
p
2
3
2
7
15
13. If x(t
=
2sin50
p
 t 
+
3 cos55
p
 t 
+
3 sin60
p
 t, find the period and cyclic frequency of x(t).
14. A linear circuit contains 6 two-terminal elements. The sum of instantaneous power in five of them 
at a particular instant is found to be 17 W. What is the nature of the remaining element and what 
is the instantaneous power delivered to it at that instant?
15. A linear element has v(t
=
10 sin10
p
 t V and i(t
=
3 cos (10
p
 t 
-
45
°
) A as per passive sign 
convention. (i) Is the element a resistor? If not, why? (ii) Can the element be a simple element 
like an inductor or a capacitor or must it be a composite element? (iii) Find the average rate of 
growth of energy dissipated in the element. (iv) Is this average rate accurate enough if the element 
remained powered up only for 0.43 s? If not, calculate the average rate at which energy was 
dissipated in it.
16. The square wave in Fig. 6.8-1 is the voltage across an element and the triangle wave is the current 
through it. (i) Find and plot the instantaneous power delivered to the element and the energy 
delivered to it as functions of time for t > 0. (ii) Calculate the cycle average power.


Problems 
6.37
–10
–5
5 10 15
v
(
t
) (V), 
i
(
t
)
 
(A)
t
(ms)
20 25 30 35 40 45
5
10
Fig. 6.8-1 
17. Calculate the average power an element with v(t) same as the square wave in Fig. 6.8-1 and i(t
=
(5
+
the triangle wave in Fig. 6.8-1) for t

0. 
18. Show that average power in an isolated circuit is a conserved quantity.
19. Show that cyclic average power in an isolated circuit is a conserved quantity.
20. An active circuit delivers i(t
=
10 sin300
p
 t A into the positive terminal of a 12 V battery. The 
battery has an internal resistance of 0.2 
W
. (i) What is the average power delivered to the 12 V source 
inside the battery? (ii) What is the average power loss in the internal resistance of the battery?
21. The voltage across a linear load is v(t
=
325 sin(100
p
 t 
-
25
°
) V. If the load current i(t) is found 
to lead v(t) by 36
°
and the average power delivered to the load is 250 W, find i(t) as a function of 
time.
22. Derive an expression for average power if v(t
=
sin 
w
t 
+
b cos 
w
t and i(t
=
sin 
w
t 
+
d cos 
w
t 
in terms of a, b, c and d.
23. A sinusoidal voltage source of 230 V rms delivers 1 kW of average power to a load. What is the 
minimum possible amplitude of load current?
24. The periodic ramp voltage waveform in Fig. 6.8-2 is applied across a resistor of 10 
W
. Find the 
average power dissipated in it.
5 10 15 20 25 30 35 40 45
v
(
t
) (V)
t
(ms)
5
10
Fig. 6.8-2 
25. The absolute value of v(t) shown in Fig. 6.8-3 is applied across a 5 
W
resistor. Find the average 
power delivered to it. 
10
–5
5
10
5 10 15 20 25 30 35 40 45
v
(
t
) (V)
t
(ms)
Fig. 6.8-3 


6.38
Power and Energy in Periodic Waveforms 
26. A pure sinusoidal voltage v(t
=
100 sin100
p
 t V is applied across a 20 
W
resistor. (i) Find the 
amount of energy that is moving back and forth between the voltage source and the resistor. (ii) 
Find the time required such that this amount is less than 1 % of the energy dissipated in the resistor.
27. A linear load draws i(t
=
5 sin200
p
 t A from a voltage source v(t
=
200 cos 200
p
 t V. (i) Find the 
average power delivered to the load. (ii) Find the amount of energy that is moving back and forth 
between the voltage source and the load.
28. A linear composite load draws i(t
=
5 sin(100
p
 t 
-
30
°
) A from a voltage source v(t
=
200 
sin100
p
 t V. (i) Find the average power delivered to the load. (ii) Find the amount of energy that is 
moving back and forth between the voltage source and the load. (iii) Find the time required such 
that this amount is less than 1% of the energy dissipated in the load.
29. A 48-V battery with a series resistance of 0.1 
W
delivers the current shown in Fig. 6.8-4 to a 
power electronic load through a connecting wire resistance of 0.05 
W
. (i) Find the cycle average 
and rms value of i(t). (ii) Find the average power delivered by the source and received by the load. 
(iii) What is the waveshape and value of i(t) that would have resulted in minimum loss in the 
system with source delivering same average power?
5
10 15 20 25 30 35
i
(
t
)
 
(A)
t
(ms)
5
10
15
Fig. 6.8-4 
30. What is the ratio between rms values of a symmetric square wave and a sinusoidal waveform with 
same amplitude?
31. What are the ratios between rms values and half-cycle average values of a symmetric triangle 
waveform and a sinusoidal waveform with same amplitude?
32. The rms value of a periodic waveform v(t) with a frequency of 1kHz is found to be 10 V. What is 
the rms value of v
1
(t) which has same amplitude and waveshape as that of v(t), but has a frequency 
of 10 Hz?
33. The rms value of V
m
sin
w
t is V
m
/

2 for any value of 
w
. Explain why 
w
value does not affect the 
rms value.
34. If the average power delivered by a 50 Hz sinusoidal voltage to a resistor of 10
W
is 2 W, what is 
the average power delivered to the same resistor by another sinusoidal voltage source with same 
amplitude and 5 kHz frequency?
35. Show that if V
rms
is the rms value of a periodic waveform v(t), the rms value of av(t) is aV
rms 
where 
is a real constant.
36. A sinusoidal voltage source v(t
=
100 sin20
p
 t is applied across a 10
W
resistor for 0.42 s from 
t 
=
0. (i) Find the cyclic average power. (ii) Find the average power delivered during the connection 
duration. (iii) Why are the two values different?
37. A non-sinusoidal periodic voltage waveform with rms value of 100 V is applied to a 10
W
resistor. 
What is the average power delivered to the resistor?
38. If v(t
=
V
m
sin
w
t 
+
0.5V
m
cos3
w
t V and i(t
=
I
m
sin(
w
t – 45
°
) – 2I
m
cos(3
w

-
45
°
) A are the 
terminal variables of a load, find the average power delivered to the load.
39. (a) If v
1
(t
=
5 sin 100
p
 t and v
2
(t
=
5 sin 100
p
 t, find the rms value of v
1
(t
+
v
2
(t), average power 
that will be delivered to a 10
W
resistor by v
1
(t
+
v
2
(t), and the energy that will be delivered to 


Problems 
6.39
10
W
resistor in 0.5 s. (b) If v
1
(t
=
5 sin 100
p
 t and v
2
(t
=
5 sin 100.000001
p
 t, repeat part (a). Can 
the energy delivered in 0.5 s be found from average power in this case? Why are the rms values so 
different in (a) and (b) for such a small change in frequency of one component?
40. A current i(t
=
10 sin 200
p
 t flows through a resistor of 5 
W
from t 
=
0 to t 
=
32 ms. Explain 
why energy delivered to the resistor is not equal to average power multiplied by duration of 
connection. Calculate the actual value of energy dissipated in the resistor.
41. A sinusoidal voltage source v(t
=
V
m 
sin
w
t V delivers a fixed amount of average power P through 
its internal resistance of R to a load. The load current has a general form of 
i t
a
n t b
n t
n
n
n
( )
sin
cos
=
+
=


1
w
w
A. 
Show that the fixed amount of average power delivered by the source reaches the load with 
maximum efficiency and minimum loss, when i(t) is a pure sinusoidal waveform at 
w
rad/s with 
zero phase difference from v(t), i.e., all a’s and b’s are zero-valued except a
1.
42. Show that the rms value of a periodic waveform x(t) and its absolute value |x(t)| are equal.
43. The voltage appearing across a power electronic load and the current drawn by it are shown in 
Fig. 6.8-5. (i) Find the average power delivered to the load. (ii) Find the cycle average value and 
rms value of v(t) and i(t).
5
10
15
20
25
30
35
i
(
t
)
 
(A), 
v
(
t
)
 
(V)
i
(
t
)
v
(
t
)
t
(ms)
5
10
15
Fig. 6.8-5 
44. Find the value of 
d
such that the periodic waveform shown in Fig. 6.8-6 will have the same rms 
value as that of a sinusoidal waveform with same peak voltage of V
p
.
V
ρ

V
p
0.5
δ
T
0.5
T
δ
0.5(1 – 
)
T
t
T
v
(
t
) (V)
Fig. 6.8-6 
45. Find the cycle average and rms value of the periodic waveform in Fig. 6.8-7.
5 10 15 20 25 30 35 40 45
v
(
t
) (V)
t
(ms)
5
10
Fig. 6.8-7 


6.40
Power and Energy in Periodic Waveforms 
46. If v(t) across an element is 10 sin100
p
 t V and i(t) in that element is 2 
+
3sin200
p
 t 
+
2 cos300
p
 t 
A, find the average power delivered?
47. If v(t) across an element is 5 
+
10 sin100
p
 t V and i(t) in that element is 2 
+
3sin100
p
 t 
+

cos100
p
 t 
+
2 sin300
p
 t A, find the average power delivered?
48. Calculate the form factor and crest factor for the waveform shown in Fig. 6.8-8.
–10
–5
–15
10
15
5
5
v
(
t
) (V)
t
(ms)
10
15
20
25
30
35
40
Fig. 6.8-8 
49. A rectifier-type voltmeter reads the rms value of a sine wave by measuring the half-cycle average 
of the waveform and graduating the meter scale after accounting for the form factor of the 
waveform. What will be the meter reading if (i) a 10 V peak sinusoidal waveform is applied to 
it, (ii) a 10 V peak symmetrical square waveform is applied to it and (iii) a 10 V peak symmetric 
triangular waveform is applied to it?
50. Find the form factor and crest factor of the current waveform shown in Fig. 6.8-9.
–15
–10
–5
5
10
15
i
(
t
)
 
(A)
t
(ms)
5
4
6
10
14 16
15
20
Fig. 6.8-9 
51. The half-cycle average of a periodic voltage waveform is 25 V. Form factor is 1.2. Find the power 
delivered to a 10 
W
resistor when this waveform is applied across it?
52. The cycle average of a periodic voltage waveform is 25 V. Its rms value is 35 V. Find the
power delivered to a 5 
W
resistor when this waveform is applied to it after removing its DC 
component?
53. Find the rms value of v(t
=
20 
+
20 sin100
p
 t 
+
35 cos (100
p
 t – 35
°

+
23 sin (250
p
 t – 0.2
p

+
21 cos (250
p
 t 

45
°
) V.
54. If the current in an element as per passive sign convention is i(t
=

+
2 sin(100
p
 t 
-
36
°

+
3.5 cos 
(100
p
 t – 71
°

+
1.15 sin (250
p
 t – 0.45
p

+
1.05 cos (250
p
 t) A when the voltage waveform in 
Problem 24 is applied across it, find the average power delivered to it.


Problems 
6.41
55. One period of two periodic voltage waveforms v
1
(t) and v
2
(t) is shown in Fig. 6.8-10. Find the 
power delivered by (v
1
(t
+
v
2
(t)) to a 10 
W
resistor. Explain why average power does not satisfy 
superposition principle in this case.
v
2
(
t
)
10
–10
0.5 
T
t
t
T
v
1
(
t
)
10
–10
0.5 
T
T
Fig. 6.8-10 
56. v
1
(t) is a composite periodic waveform containing many sinusoidal waveforms of distinct 
frequencies. v
2
(t) is another composite periodic waveform containing many sinusoidal waveforms 
of distinct frequencies. v
1
(t) and v
2
(t) do not share a sinusoidal waveform component of same 
frequency. Show that the rms values of [v
1
(t
+
v
2
(t) ] and [v
1
(t
-
v
2
(t) ] will be the same. 


This page is intentionally left blank.


Introduction 
7.1
T h e S i n u s o i d a l S t e a d y -
S t a t e R e s p o n s e
CHAPTER OBJECTIVES
• To define and explain the concept of sinusoidal steady-state.
• To develop a systematic procedure to analyse sinusoidal steady-state in circuits in terms of 
steady-state solution for a complex exponential input function.
• To show how to use phasors, phasor equivalent circuits and phasor diagrams for solving 
circuits under sinusoidal steady-state condition.
• To illustrate the application of circuit theorems in phasor equivalent circuits.
• To introduce complex power and its components and provide detailed interpretation of the 
power components.
• To introduce magnetically coupled circuits and explain the application contexts for linear 
perfectly coupled transformer and ideal transformer.
• To familiarise the reader with analysis strategies for sinusoidal steady-state response through 
a large number of solved examples.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   193   194   195   196   197   198   199   200   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish