Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


Y - 1 matrix.  We skip the details and state the second form of Reciprocity Theorem. Second form of



Download 5,69 Mb.
Pdf ko'rish
bet175/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   171   172   173   174   175   176   177   178   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

Y
-
1
matrix. 
We skip the details and state the second form of Reciprocity Theorem.
Second form of

Reciprocity Theorem
The ratio of current measured in a short-circuit across a pair of terminals to the 
excitation voltage applied at another pair of terminals is invariant to an interchange 
of excitation terminals and response terminals in the case of a linear time-invariant 
resistive circuit with no independent sources inside.
The third and last form of this theorem can be obtained by considering the circuits shown in
Fig. 5.7-3.


5.32
Circuit Theorems
(b)
A linear resistive
circuit with
no sources
k
m
i
I
j
i
ij
(a)
A linear resistive
circuit with
no sources
k
m
i
V
j
+

+

i
S
v
km
Fig. 5.7-3 
Circuit illustrating third form of Reciprocity Theorem
We calculate the ratio 
v
V
km
in the circuit of Fig. 5.7-3 (a) first.
Node voltage at node-i 
=
v
i
=
a
ii
i
S
– a
ij
i
S
Node voltage at node-j 
=
v
j
=
-
a
jj
i
S

a
ji
i
S
Node voltage at node-k 
=
v
k
=
a
ki
i
S
– a
kj
i
S
Node voltage at node-m 
=
v
m
=
a
mi
i
S
– a
mj
i
S
The node voltages at node-i and node-j are constrained to have a difference of V.
a
ii
i
S
– a
ij
i
S
–(
-
a
jj
i
S
+
 a
ji
i
S

=
V 

i
V
a
a
a
a
s
ii
jj
ij
ji
=
+


Substituting this expression for i
S
in the equations for v
k
and v
m
, we get the ratio of voltage measured 
across the second pair of terminals to the voltage applied at the first pair of terminals as
v
V
a
a
a
a
a
a
a
a
km
ki
mi
mj
kj
ii
jj
ij
ji
=

+

+


(
) (
)
(5.7-3) 
Now we calculate 
i
I
ij
in the circuit Fig. 5.7-3 (b).
v
i
=
a
ii
i
ij
– a
ij
i
ij
+
a
ik
I – a
im
I
v
j
=
-
a
jj
i
ij
+
 a
ji
i
ij
+
 a
jk
I – a
jm
I
But v
i
=
v
j
\
 
=
(a
ii
i
ij
– a
ij
i
ij
+
a
ik
I – a
im
I) – (
-
a
jj
i
ij
+
 a
ji
i
ij
+
 a
jk
I – a
jm
I)
Solving this we get the ratio of current measured in short-circuit across the first pair of terminals 
to the current source applied at across the second pair of terminals as
i
I
ik
im
jm
jk
ii
jj
ij
ji
a
a
a
a
a
a
a
a
=

+

+


(
) (
)
(5.7-4) 
Comparing the two expressions in Eqns. 5.7-3 and 5.7-4 and using the symmetry of 
A
(i.e., the 
inverse of nodal conductance matrix), we see that the two ratios are equal.
Third form of

Reciprocity Theorem
The ratio of current measured in a short-circuit across first pair of terminals to the 
excitation current applied at the second pair of terminals is same as the ratio of voltage 
measured across the second pair of terminals to the voltage applied at the first pair 
of terminals in the case of a linear time-invariant resistive circuit with no independent 
sources inside. (Refer Fig. 5.7-3 for polarity of currents and voltages.)


Reciprocity Theorem 
5.33
Note that the key to Reciprocity Theorem is that (i) the nodal conductance matrix 
Y
(and mesh 
resistance matrix 
Z
) of the circuit must be time-invariant and symmetric and (ii) excitation should be 
applied only at terminals identified, i.e., there should not be independent sources present within the 
circuit. 
Y
and 
Z
matrices of a circuit containing linear two-terminal time-invariant resistors will be 
symmetric. Hence such circuits will obey all the three forms of Reciprocity Theorem unconditionally.
Dependent sources, even if they are linear, bilateral and time-invariant, can make these matrices 
asymmetric. However, they need not do so always. There can be dependent sources in the circuit and 
yet the circuit may have symmetric 
Y
and
 Z
matrices. Reciprocity Theorem will hold for such circuits 
too. See the following example.
example: 5.7-1
Show that Reciprocity Theorem is valid for the circuit in Fig. 5.7-4.
3
a
b
c
d






+
+
+



i
x
i
x
v
x
v
x
Fig. 5.7-4 
Circuit for Example 5.7-1
Solution
We find the mesh resistance matrix of the circuit first and verify whether it is symmetric and time-
invariant. We know that the mesh resistance matrix of a circuit can be found from its deactivated 
version. Since excitation can be applied only across a
-
b and c
-
d, we short these two ports (since 
for mesh analysis voltage source is the excitation source) and get the circuit in Fig. 5.7-5. The mesh 
currents are identified in it.
3
a
b
c
d






+
+
+



i
x
i
x
i
1
i
2
v
x
v
x
Fig. 5.7-5 
Circuit to obtain 
Z
matrix in Example 5.7-1 
The mesh equations are written for the two meshes after observing that i
x
=
i
1
and v

=
3i
2
.
i
1
-
i
2

3 (i
1
-
i
2

=
0 and 3 (i
2
-
i
1
) –3 i
1

i
2
=
0 are the mesh equations. Therefore, the mesh 
resistance matrix 
Z
is

=








5
6
6
6
and it is a symmetric time-invariant matrix. Therefore, Reciprocity Theorem will 
be valid in the circuit.
We verify the first form by using the circuit configurations shown in Eqn. 5.7-4. A 1A independent 
current source is used to drive the a
-
b terminal pair first and the voltage v
cd
is noted. Then the same 


5.34
Circuit Theorems
current source is used to drive the c
-
d terminal pair and the voltage v
ab
is noted. We expect to see that 
v
ab
=
v
cd

(a)
(b)
1 A
1 A
3
a
b
a
b
c
d
c
d












+
+
+
+

+




i
x
i
x
i
x
v
x
v
x
3
+
+
+



i
x
v
x
v
x
Fig. 5.7-6 
Circuits for verifying Reciprocity Theorem in Example 5.7-1
The second mesh current in circuit of Fig. 5.7-6 (a) is zero. First mesh current is 1 A. Applying 
KVL in the second mesh
-
3
× 

-
3
× 

+
3
× 

+
v
cd
=


v
cd
=
6 V. 
The first mesh current in circuit (b) is zero. Second mesh current is 
-
1 A. Applying KVL in the first 
mesh, 
-
v
ab
+
2
× 
0 – (3
× -
1) 
+
3
× 

=
0

v
ab
=
6 V. 
Thus, we see that first form of the theorem holds in this circuit. It may be verified in a similar 
manner that the other two forms are also valid in this circuit.
5.8 
maxImum power tranSfer theorem
All electrical and electronic circuits fall under one of the three broad categories – power generation 
and delivery circuits, power conditioning circuits and signal generation and conditioning circuits.
In a power delivery context, one part of the circuit acts as a power source and delivers power to the 
other part of the circuit. In the process of delivering power to load part of the circuit, the source part 
of the circuit ends up dissipating some of the power within itself. This compromises the efficiency of 
power delivery as well as the power availability to the load at the same time. Hence the power delivery 
capability of source part of the circuit for a given load circuit is of crucial practical significance – both 
in high-power electrical circuits (kW to hundreds of MW) and low-power electronic circuits (pW to 
100’s of W). We address the issue of power delivery capability of a source circuit in this section.
(a)
Linear
memoryless
circuit with
sources
Load
circuit
i
v
+

(b)
Load
circuit
i
v
+

+

v
OC
R
O
Fig. 5.8-1 
(a) The power delivery context (b) Power delivery circuit 
replaced by its Thevenin’s equivalent
Figure 5.8-1 shows a linear time-invariant memoryless circuit containing one or more independent 
DC sources delivering power to a load circuit that may be linear or non-linear. It is assumed that 
the constraints required for applying Thevenin’s theorem are satisfied by the entire circuit – i.e., the 
circuits in Fig. 5.8-1 (a) and (b) have unique solution and there is no interaction between the delivery 
circuit and load circuit other than through the common terminals. Then, we can replace the power 
delivery circuit by its Thevenin’s equivalent comprising an open-circuit voltage in series with the 
Thevenin’s equivalent resistance.


Maximum Power Transfer Theorem 
5.35
We state the Maximum Power Transfer Theorem when the power delivery circuit is a linear time-
invariant memoryless circuit containing one or more independent DC sources.
The power delivered by a linear time-invariant memoryless circuit containing independent 
DC sources is a maximum of 
v i
oc sc
4
when it is delivering 
2
sc
i
to the load where 
v
oc
is the 
open-circuit voltage in its Thevenin’s equivalent and 
i
sc
is the short-circuit current in its 
Norton’s equivalent.
We show this as follows:
p vi
v
R i i
dp
di
v
R i
oc
o
oc
o
= =


=

[
]
2
Equating the derivative of power with respect current to zero, we get the condition for maximum 
power transfer as i
v
R
i
R
v
i
oc
o
sc
o
co
sc
=
=
=




2
2
since
. The value of maximum power transferred to load 
circuit is 
=





×
=
v
R i
i
v i
oc
o sc
sc
oc sc
2
2
4
w. This transfer will take place with a load voltage of 
v
oc
2
V and 
load current of 
i
sc
2
A. The internal dissipation inside the power delivery circuit under this condition 
will be same as the power transferred and the efficiency of power delivery will be 50%.If the load 
circuit is a single resistor of value R
L
, then the condition for maximum power transfer reduces to 
R
L
=
R
o
and the maximum power transferred will be 
v
R
oc
L
2
4
w.
example: 5.8-1
A DC voltage source of 200 V with an internal resistance of 2 
W
delivers power to another DC source 
in series with a resistor R. The value of this DC source is 50 V and the two sources oppose each other 
in the circuit. Find the value of R and the power transferred to load circuit if maximum power transfer 
is to take place.
Solution
Maximum power transfer takes place when the source is delivering half its short-circuit current, i.e., 
100 A in this case. The voltage across the load circuit under this current flow has to be half of the open-
circuit voltage of the source. Therefore, the 50 V source and R together should absorb 100 V when 100 
A is flowing through them. Then R must be 0.5 
W
.
The maximum power transferred will be 100 V 
×
100 A 
=
10 kW of which 5 kW will go into the 
50 V DC source and 5 kW will be dissipated in 0.5 
W
resistor. The internal dissipation of the 200 V 
source will be 10 kW.
It should be obvious that we do not intend to load an electrical power source to the maximum power 
transfer level since it will result in inefficient operation. But, a comparison between the maximum 
power that the source can deliver and the power actually required in the load will immediately reveal 
to us the level of efficiency we can hope for in the delivery system. However, when efficiency is of 


5.36
Circuit Theorems
no concern and signal strength is of prime concern, we take care to achieve maximum power transfer 
condition in the circuit. This is relevant in low-power electronic circuits. The source signal may be 
weak and it may come through a high R
o
R
L
 may be very small compared to the internal resistance. 
Then some kind of matching circuit that makes the low R
L
 appear high and equal to R
o
to the source 
will be interposed between the source and load.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   171   172   173   174   175   176   177   178   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish