Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet159/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   155   156   157   158   159   160   161   162   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

i
1
-
i
2
=
2
13
3
26
7
26
1
2
1
I
I
V
+

.
Consider the current in the 1
W
across the current source I
1
. This is obtained by applying KCL at the 
node where I
1
, 2
W
and 1
W
are connected together. The current in 2
W
is same as the first mesh current 
in circuit of Fig. 5.1-1 (b) and hence the current in 1
W
=
I
1

i
1
=
10
13
1
13
2
13
1
2
1
I
I
V
+
+
.
Currents in all elements can be worked out in a similar manner. These currents are marked in 
Fig. 5.1-2 using a notation where the three numbers in brackets show the coefficients of I
1
I
2
and V
1

respectively. Or, they can be interpreted as the current components when all the three sources have 
unit values. Consider the numbers marked for the voltage source V
1
as 
2
13
3
26
7
26
,
,





. This means 
that I
1
contributes 
2
13
A per unit A to this current, I
2
contributes 
3
26
A per unit A to this current and 
V
1
contributes 
-
7
26
A per unit V to this current.
(1, 0, 0)
(3/13, –1/13, –2/13)
(2/13, 3/26, –7/26)
(10/13, 1/13, 2/13)
(1/13, 21/26, 3/26)
(0, 1, 0)
(1/13, –5/26, 3/26)
+



Fig. 5.1-2 
Currents in various elements in the circuit of Fig. 5.1-1 (a)
Thus, each element current (and element voltage too) is made up of three components. Each 
independent source contributes one component to each element current and voltage. The components 
contributed by all the independent sources add together to form the total response.
That the total currents in elements and total voltage across them will satisfy KCL and KVL 
respectively is only to be expected. In fact, that was the basis for node analysis and mesh analysis. 
However, what is not so obvious is that components contributed by a particular independent source 
to all element currents will satisfy KCL at all nodes without depending in any way on the components 


5.4
Circuit Theorems
provided by other independent sources. Similarly, components contributed by a particular independent 
source to all element voltages will satisfy KVL in all loops without depending in any way on the 
components provided by other independent sources. This may be verified easily in the example that 
was analysed in this section.
The implication from this observation is that the components contributed by a particular independent 
source to circuit variables are the same as the solution of the circuit when that source is acting alone 
without the other sources present. In other words, the contribution of a particular source to a circuit 
variable does not change when some other source(s) is acting simultaneously.
This can also be understood in another way. We had seen that all mesh current variables and node 
voltage variables (and hence all voltage variables current variables in the circuit) for a circuit can be 
expressed as linear combinations of independent source functions. The solution for mesh currents in 
the circuit in Fig. 5.1-1 was 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   155   156   157   158   159   160   161   162   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish