Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet129/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   125   126   127   128   129   130   131   132   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

v
v
v
v
v
v
R
R
1
2
2
2
1
2
0
Nodal Analysis of Circuits Containing Resistors ... 
4.5


4.6
Nodal Analysis and Mesh Analysis of Memoryless Circuits
All element voltages may be related to the three node voltages in this manner by inspection.
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
R
R
R
R
R
R
I
I
1
1
2
2
1
3
3
1
4
2
5
3
2
6
3
1
2
1
2
=
=

= −
=
= −
=
= −
=
vv
v
v
I
3
2
3
=

(4.2-1)
We observe that all element voltages can be obtained either as some node voltage straightaway or 
as difference between two node voltages. Hence, a set of (n

1) node voltages, defined with respect 
to the reference node, is a sufficient set of voltage variables for determining b element voltages. 
Note that we are using KVL equations to reduce the number of pertinent voltage variables to (n

1) 
from b.
The KCL equations remain. We use them to solve for these node voltages. But KCL equations 
are written in terms of currents. This is where the element equations come in. We substitute element 
equations in KCL equations as and when we write KCL equations in order to substitute for element 
currents in terms of element voltages. Of course, element voltages will be expressed in terms of node 
voltages only. Thus, writing node equations at the n

1 nodes (because only n

1 KCL equations are 
independent) involves two mental operations for each element – obtain element voltage in terms of 
node voltages and replace current variable by voltage variable with the help of element equation. We 
illustrate this for node-1 in the circuit in Fig. 4.2-1.
We write KCL at this node by equating the sum of currents going away from the node to zero.
i
i
i
I
i e
v
R
v
R
v
R
I
i e
G v
G v
R
R
R
R
R
R
1
2
3
1
1
1
2
2
3
3
1
1 1
2
1
0
0
+

− =
+

− =
+
. .,
. .,
(
−−
+

=
v
G v
v
I
2
3
1
3
1
)
(
)
where G represents the conductance value (1/R) of corresponding resistance. The third equation, 
which is the final form of node equation, can be written by inspection without writing out the first 
two explicitly. With our convention of positive sign for current flowing away from the node, the node 
voltage variable at the node where KCL is being written will appear with positive sign and other node 
voltage variables will appear with negative sign in the equation. Moreover, the net current delivered by 
current sources to that node will appear with positive sign on the right side of equation. The remaining 
two node equations for this circuit are 


G v
v
G v
v
G v
I
I
G v
v
G v
v
G v
I
2
2
1
5
2
3
4 2
2
3
3
3
1
5
3
2
6 3
2
(
)
(
)
(
)
(
)

+

+
= − −

+

+
=
We can solve for v
1
v
2
and v
3
using the three equations listed below:
G v
G v
v
G v
v
I
G v
G v
v
G v
v
I
I
1 1
2
1
2
3
1
3
1
4 2
2
2
1
5
2
3
2
3
+

+

=
+

+

= − −
(
)
(
)
(
)
(
)
G
G v
G v
v
G v
v
I
6 3
3
3
1
5
3
2
2
+

+

=
(
)
(
)
(4.2-2)
The element voltages may be found out subsequently by using Eqn. 4.2-1 and the element currents 
may be obtained by using element equations in the last step. 
We followed a certain convention in writing the node equations in Eqn. 4.2-2. Adhering to such a 
convention has yielded certain symmetry in these equations. Let us express these equations in matrix 
notation to see the symmetry clearly. 
(
)
(
)
G
G
G v
G v
G v
I
G v
G
G
G v
G v
I
I
G
1
2
3
1
2 2
3 3
1
2 1
2
4
3
2
5 3
2
3
3
+
+


=

+
+
+

= − −

vv
G v
G
G
G v
I
i e
G
G
G
G
G
G
G
G
G
1
5 2
3
5
6
3
2
1
2
3
2
3
2
2
4
3

+
+
+
=
+
+



+
+
(
)
. .,
(
)
(
)
−−


+
+




















=


G
G
G
G
G
G
v
v
v
5
3
5
3
5
6
1
2
3
1
0
0
0
1
1
0
1
0
(
)




















=
I
I
I
i e
1
2
3
. .,
YV
CU
(4.2-3)
Y
is called the Nodal Conductance Matrix
V
 
is called the Node Voltage Vector
U
 is called the Input 
Vector and 
C
is called the Input Matrix.
Note that the order of Nodal Conductance matrix is (n

1) 
×
(n

1) and that it is symmetric. The 
diagonal element of 
Y
matrix, y
ii
, is the sum of conductances connected at the node-i. The off-diagonal 
element of 
Y
matrix, y
ij
, is the negative of sum of all conductances connected between node-i and 
node-j. There can be more than one conductance connected between two nodes. Then, they will be 
in parallel and they will add in y
ij
. That is why y
ij
should be the negative of sum of all conductances 
connected between node-i and node-j. The right-hand side product 
CU
is a column vector of net 
current injected by the current sources at the corresponding nodes.
Now, we can write down this matrix equation by inspection after skipping all the intermediate 
steps. The following matrix equation results in the case of the example we considered in this section.
G
S G
S G
S
G
S G
S G
1
2
3
4
5
6
1
0 2
5
1
1
1
1
0 5
2
1
1
1
1
0 5
2
=
=
=
=
=
=
=
=
=
=
.
;
;
.
;
;
.
;





==
=


























= − −
1
0 2
5
8
1
2
1
4
2
2
2
9
9
21
1
2
3
.
;
(
S
v
v
v
−−










= −










17
21
9
4
21
)
(4.2-4) 
Solving the matrix equation by Cramer’s rule, we get,
Nodal Analysis of Circuits Containing Resistors ... 
4.7


4.8
Nodal Analysis and Mesh Analysis of Memoryless Circuits
v
1
9
1
2
4
4
2
21
2
9
8
1
2
1
4
2
2
2
9
9 36 4
1 36 42
2 8 8
=





÷






=
− + − +


(
)
(
)
(
44
8 36 4
1 9 4
2 2 8
446
223
2
8
9
2
1
4
2
2 21
9
8
1
1
)
(
)
(
)
(
)
− + − − −
+
=
=
=





÷


V
v
22
1
4
2
2
2
9
8 36 42
9 9 4
2 21 8
223
223
223
1
8
1
1




=
− +
− − − − − −
=
=
=

(
)
(
)
(
)
V
v
99
1
4
4
2
2 21
8
1
2
1
4
2
2
2
9
8 84 8
1 21 8
9 2 8
8 36




÷






=
− + − − +
+

(
)
(
)
(
)
(
44
1 9 4
2 2 8
669
223
3
)
(
)
(
)
+ − − −
+
=
=
V
The element voltages can be calculated by using Eqn. 4.2-1 or by inspection. Similarly, the element 
currents may be obtained by inspection. The complete solution is marked in the circuits appearing in 
Fig. 4.2-2.
I
1
I
2
I
3
R
1
0.2 

R
2
R
5
R
3
R
4
R
6


0.5 

0.5 

0.2 



9 A
2 V
21 A
–17 A
(a)
1 V
3 V
0 V
+
+
+
+
+
+
+
+
+









2 V
3 V
2 V
15 A
9 A
–2 V
2 V
10 A
1 A
2 A
1 V
1 V
–2 V
1 V
1 V
1 A
21 A
–17 A
(b)
3 V
1 V
0 V
4 A
Fig. 4.2-2 
Nodal analysis solution for circuit in Fig. 4.2-1
This section has shown that an n-node circuit containing only linear resistors and independent 
current sources will have a nodal representation given by 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   125   126   127   128   129   130   131   132   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish