Practical Deep Learning Examples with matlab



Download 5,05 Mb.
Pdf ko'rish
bet5/19
Sana22.07.2022
Hajmi5,05 Mb.
#836233
1   2   3   4   5   6   7   8   9   ...   19
Bog'liq
deep-learning-practical-examples-ebook

 'InitialLearnRate'
, 0.0001
As a result of changing that one parameter, we get a much better
result—nearly 90% accuracy!
For some applications, this result would be satisfactory, but you may
recall that we’re aiming for 99%. 
ADVANCED TIP 
You can use Bayesian optimization to identify the optimal values of the training
parameters. Bayesian optimization will run the network multiple times (and you can
parallelize the process). 


9 | Practical Deep Learning Examples with MATLAB
Changing the Network Configuration
Getting to 99% from 90% requires a deeper network and many rounds 
of trial and error. We add more layers, including batch normalization 
layers, which will help speed up the network convergence (the point at 
which it responds correctly to new input).
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,16,
'Padding'
,1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,
'Stride'
,2)
convolution2dLayer(3,32,
'Padding'
,1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,
'Stride'
,2)
convolution2dLayer(3,64,
'Padding'
,1)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
The network is now “deeper.” This time, we’ll change the network but 
leave the training options the same as they were before. 
After the network has trained, we test it on 10,000 images.
This network achieves the highest accuracy of all—around 99%. We 
can now use it to identify handwritten letters in online images, or even in 
a live video stream. 
Learn More
Training a Neural Network from Scratch with MATLAB 
5:13
Deep Learning in 11 Lines of MATLAB Code
 2:38

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish