Practical Deep Learning Examples with matlab


% Overlay segmentation results onto original image



Download 5,05 Mb.
Pdf ko'rish
bet12/19
Sana22.07.2022
Hajmi5,05 Mb.
#836233
1   ...   8   9   10   11   12   13   14   15   ...   19
Bog'liq
deep-learning-practical-examples-ebook

% Overlay segmentation results onto original image.
B = labeloverlay(I,C,
'ColorMap'
,cmap);
2. Loading in the Dataset


21 | Practical Deep Learning Examples with MATLAB
Data augmentation is a useful technique for improving the accuracy of 
the trained model. In data augmentation, you increase the number of 
variations in the training images by adding altered versions of the
original images. The most common types of data augmentation are
image transformations: rotation, translation, and scale.
In this example, we incorporate a random translation.
Here’s an example of a new image created by shifting the original
image 10 pixels to the left.
While the effect of this translation is subtle, it can increase the robust-
ness of the deep learning network by forcing it to learn and understand 
slight variations, which are very likely to occur in a real-world system. 
augmenter = imageDataAugmenter(
'RandXTranslation'
,... 
 
[-10 10],
'RandYTranslation'
,[-10 10]);
2. Loading in the Dataset


22 | Practical Deep Learning Examples with MATLAB
Recall that a semantic segmentation network consists of an image classi-
fication network and an up-sampling portion that creates the final pixel 
classification.
We can create the upsampling portion of the network automatically with 
the MATLAB 
segnetLayers()
function.
The result is a directed acyclic graph (DAG) network. 
Unlike a series network, a DAG network can have inputs from, or out-
puts to, multiple layers. A DAG allows for more complex connections 
between layers, and can result in higher accuracy on difficult classifica-
tion tasks.
Notice the branching in this structure: A single input node can go to
multiple outputs.
You can visualize the structure of any DAG network by calling this line 
of code: 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish