Master of technology in information technology department of information science and


Figure 4.5 Training and Validation Accuracy



Download 0,79 Mb.
Pdf ko'rish
bet11/13
Sana22.07.2022
Hajmi0,79 Mb.
#835946
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
JANANI A

Figure 4.5 Training and Validation Accuracy 
 
Figure 4.6 Training and Validation Loss
 
Figure 4.7 Classification Report
4.8 IMAGE SEGMENTATION USING MASK R-CNN
Input
: Input dataset
Output 
: Segmented image of people with and without mask
 


28 
Process Description
Step 1:
First, the dataset is loaded and ID mapping is done where mask and no 
mask is assigned.
Step 2
: Next a tensorflow session is created and the Mask RCNN model is 
loaded.
Step 3:
Then, actual detection of Boxes, Class, Scores and Masks are done.
Step 4:
Finally, Instance segmentation is performed and Detection results are 
visualized.
Figure 4.8 Output of Image Segmentation
 
 


29 
4.9 IMPLEMENTING THE MODEL IN OPENCV
 
Input 
: Saved Model
Output : 
Mask or no mask using webcam
Process Description
Step 1
: First, the video is read by frame and it resized as required to process.
Step 2:
Then the preprocessing function is called
Step 3
: Finally, people wearing a mask and not wearing a mask is predicted
from the input data.
Step 4
: The results are captured using webcam along the accuracy.
 
Figure 4.9 Face Mask Detection 


30 
CHAPTER- 5
CONCLUSION AND FUTURE WORK
5.1 CONCLUSION 

 
The spread of Covid-19 is increasing every day in every corner of the 
world. This needs to be controlled to get back to our normal lives. While the 
specialists take care of the vaccine part, can help them by following the 
guidelines provided by WHO to remove/control the spread of this virus. The 
objective of the project is to recognize people wearing and not wearing masks 
using MobilenetV2. This algorithm is to convert an input image of a crowded 
place into our expected output which is identifying people not wearing a mask. 
Finally evaluating the numerical results.
With the help of this project implemented in proper circumstances can 
help detect people not wearing masks. This could help health and sanitary 
officials to implement the WHO guidelines in a much better way. This project 
is tested in a webcam using the above discussed methods and the results are as 
expected. With wide use of this project in public gatherings and crowded 
localities, it will be easier to detect people violating the use of masks.


Download 0,79 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish