10
МАТЕМАТИКА ДАРСЛАРИДА МАТНЛИ МАСАЛАЛАРНИ
МОДЕЛЛАШТИРИШДАН ФОЙДАЛАНИБ ЕЧИШ
Шукурова Гулшод Шарифовна
Бухоро шаҳар, 31-мактаб
I-тоифали математика фани ўқитувчиси
g.shukurova@inbox.uz
Аннотация: Мақолада юқори синф ўқувчиларида матнли масала ечиш кўникма ва
малакаларини шакллантириш ва ривожлантиришда моделлаштиришнинг тутган роли ва
ўрни, турлари ва матнли масалаларни ечишда улардан фойдаланиш усуллари баён этилган.
Калит сўзлар: матнли масала, содда масала, мураккаб масала, математик моделлашти-
риш, график моделлаштириш.
Математика дарсларида матнли масалалар назарий билимларни мустаҳкамлашда муҳим
ўрин тутади. Уларни ечиш натижасида ўқувчиларнинг мантиқий фикрлаш қобилияти ва ма-
тематик тафаккури ривож ланади, шунингдек бошқа фанлар ва ишлаб чиқаришнинг турли
соҳаларига доир билимлари шаклланади. Сўз билан қандайдир жараён, воқеа, ҳодисанинг
миқдорий жиҳатлари ифодаланган ва бирор миқдорнинг номаълум қийматини матнда бе-
рилган маълумотлар ва муносабатлар асосида топиш талаб этилган масала матнли масала
деб аталади. Ҳар бир матнли масала маълум бир объектлар орасидаги муносабатларни
ифодаловчи шарт ва талабдан ташкил топади. Ушбу объект, шарт ва талаблар бир ёки
бир нечта бўлиши мумкин. Масалаларни унда баён этилган жараён билан боғлиқ ҳолда
қуйидаги турларга ажратиш мумкин:
1. Турли объектларнинг сон қийматлари орасидаги муносабатларга доир масалалар.
2. Геометрик мазмундаги масалалар.
3. Узунлик, юза, оғирлик, вақт каби миқдорларнинг ўлчов бирликлари орасидаги
муносабатларга доир масалалар.
4. Улушларга доир масалалар.
5. Ҳаракатга доир масалалар.
6. Бажарилган иш, савдо-сотиқ ва бошқа жараёнларга доир масалалар.
7. Мантиқий топшириқлар, қизиқарли масалалар ва бошқотирмалар.
Матнли масалани ечиш учун мазмунида баён этилган ҳодиса, жараённи математика
тилига ўтказиш, яъни масаланинг математик моделини яратиш керак. Психологик
нуқтаи назардан, матнли масалани ечиш – моделлар тизими ва моделлаштиришнинг бир
даражасидан умумлашган бошқа даражасига ўтиш кетма-кетлигини излаш, уни қайта
ифодалаш жараёнидир. Қайта ифодалашда математик фикрлаш шакли анализ қилишдан
иборат бўлиб, синтез орқали амалга оширилади, яъни қаралаётган объект (ҳодиса, жараён)
ларнинг янги жиҳатлари намоён бўлади. Агар масала арифметик усул билан ечилаётган
бўлса, унинг математик модели сонли ифода, алгебраик усулда ечилганда эса тенглама
(тенгламалар системаси)дан иборат бўлади. Масалани моделлаштириш билан боғлиқ бўлган
қуйидаги учта босқични кўрсатиш мумкин:
I босқич – масаланинг математик моделини қуриш (бунда берилган ва номаълум бўлган
миқдорлар ажратилиб, улар орасидаги муносабат математик усулда ифодаланади);
– II босқич – модель устида ишлаш (сонли ифоданинг қийматини топиш, амалларни
бажариш, тенгламани ечиш);
– III босқич – топилган ечимни масала тилига ўтказиш (масалада қўйилан саволга жавоб
бериш).
Бизнинг педагогик тажрибаларимиз шуни кўрсатмоқдаки, ўқувчиларга матнли
масалаларни ечишни ўргатишдаги асосий муаммо I босқични амалга оширишда кўпроқ
учрайди. Натижада ўқувчилар масалани ечиш учун керакли арифметик амални танлаш,
масалани қисқа ёзувда ифодалаш, матнга мос математик ифодани тузиш, яъни масаланинг
математик моделини тузиш каби ишларни бажаришда қийналадилар. Уларни бартараф этиш
учун расм, жадвал, чизма, схема ва шу каби ёрдамчи моделлардан фойдаланиш мумкин.
Хулоса қилиб айтиш мумкинки, матнли масалалар математика дарсининг салмоқли
қисмини ташкил этади. Уларни ечиш натижасида ўқувчиларнинг математик тафаккури ва
300
10
мантиқий фикрлаш қобилияти шаклланади ҳамда ривожланади.
Ўқувчиларда ёрдамчи модель тузиш кўникма ва малакаларини шакллантиришда қуйидаги
услублардан фойдаланиш мақсадга мувофиқ:
1. Ҳар бир масалани ечиш жараёнида унга мос келувчи ёрдамчи модель тузиш йўлларини
атрофлича тушунтириб бориш.
2. Тузилган моделдан фойдаланиб масала ечилгач ўқувчиларга тузилган моделни бошқа
кўринишдаги моделларга ўтказишга доир топшириқлар бериб бориш.
3. Ҳар бир график моделга мос келувчи масала тузишни ўргатиш ва мустақил бажариш
учун шундай топшириқлар бериш.
Фойдаланган адабиётлар рўйхати:
1, www.ziyonet.uz
2, www.natlib.uz
301
Do'stlaringiz bilan baham: |