Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet45/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   41   42   43   44   45   46   47   48   ...   96
Bog'liq
2021272010247334 5836879612033894610

Semi-Supervised Machine Learning
The "semi-supervised machine learning algorithms" are extremely flexible
and able to learn from both “labeled” as well as “unlabeled” or raw data.
These algorithms are a "hybrid" of supervised and unsupervised ML
algorithms. Usually, the training data set consists of predominantly
unlabeled data and a tiny portion of labeled data. The use of analytical
methods such as the "forecast", "regression" and "classification" in


combination with semi-controlled learning algorithms allows the computer
to improve its accuracy in learning and training significantly. These
algorithms are often used when the production of processed and labeled
training data from the raw data set is highly resource-intensive and less
cost-effective for the company. Companies are using their systems with
semi-supervised learning algorithms to prevent additional personnel and
equipment expenses. For example, the application of technology for "facial
recognition" requires an enormous quantity of facial data dispersed across
multiple input sources. The processing, classification, and labeling of raw
data obtained from sources including internet cameras require a lot of
resources and thousands of hours to be used as a training data set.
Reinforcement Machine Learning
The "reinforcement machine learning algorithm" learns from its
environment and is much more unique than any of the previously discussed
machine learning algorithms. Such algorithms perform activities and
carefully record the results of each action, either as an error for a failed
outcome or a reward for excellent results. The two main characteristics that
distinguish the reinforcement learning algorithm are the "trial and error"
analysis technique and the "delayed reward" feedback loop. The computer
continually analyzes input data using a variety of calculations and transmits
a signal of reinforcement for each correct or intended output to eventually
optimize the final results. The algorithm creates an easy action and rewards
feedback loop for assessing, recording, and learning what activity has been
efficient, in that it resulted in right or intended output in a shorter time. The
use of such algorithms enables the system to determine optimal conduct
automatically and to maximize its effectiveness in a specific context.


Therefore, in the disciplines of gaming, robotics, and navigation systems,
the reinforcement machine-learning algorithms are heavily utilized.

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   41   42   43   44   45   46   47   48   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish