The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet425/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   421   422   423   424   425   426   427   428   ...   868
(12.9.4)
Subtracting Eq. (12.9.4) from Eq. (12.9.1) gives
(
Y
t

ρ
Y
t

1
)
=
β
1
(1

ρ
)
+
β
2
(
X
t

ρ
X
t

1
)
+
ε
t
(12.9.5)
where 
ε
t
=
(
u
t

ρ
u
t

1
)
We can express Eq. (12.9.5) as
Y

t
=
β

1
+
β

2
X

t
+
ε
t
(12.9.6)
where 
β

1
=
β
1
(1

ρ
),
Y

t
=
(
Y
t

ρ
Y
t

1
),
X

t
=
(
X
t

ρ
X
t

1
) , and 
β

2
=
β
2
.
Since the error term in Eq. (12.9.6) satisfies the usual OLS assumptions, we can apply
OLS to the transformed variables 
Y

and 
X

and obtain estimators with all the optimum
properties, namely, BLUE. In effect, running Eq. (12.9.6) is tantamount to using general-
ized least squares (GLS) discussed in the previous chapter—recall that GLS is nothing but
OLS applied to the transformed model that satisfies the classical assumptions.
Regression (12.9.5) is known as the
generalized,
or
quasi, difference equation.
It involves
regressing
Y
on
X
, not in the original form, but in the
difference form,
which is obtained by
subtracting a proportion (
=
ρ
) of the value of a variable in the previous time period from its
442
Part Two
Relaxing the Assumptions of the Classical Model
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 442


Chapter 12
Autocorrelation: What Happens If the Error Terms Are Correlated?
443
value in the current time period. In this differencing procedure we lose one observation
because the first observation has no antecedent. To avoid this loss of one observation, the
first observation on
Y
and
X
is transformed as follows:
35
Y
1
1

ρ
2
and
X
1
1

ρ
2
. This
transformation is known as the
Prais–Winsten transformation.
When 
ρ
Is Not Known
Although conceptually straightforward to apply, the method of generalized difference
given in Eq. (12.9.5) is difficult to implement because 
ρ
is rarely known in practice. There-
fore, we need to find ways of estimating 
ρ
. We have several possibilities.
The First-Difference Method
Since 
ρ
lies between 0 and 
±
1, one could start from two extreme positions. At one extreme,
one could assume that 
ρ
=
0, that is, no (first-order) serial correlation, and at the other
extreme we could let 
ρ
= ±
1, that is, perfect positive or negative correlation. As a matter
of fact, when a regression is run, one generally assumes that there is no autocorrelation
and then lets the Durbin–Watson or other test show whether this assumption is justified.
If, however, 
ρ
= +
1, the generalized difference equation (12.9.5) reduces to the 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   421   422   423   424   425   426   427   428   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish