The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet341/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   337   338   339   340   341   342   343   344   ...   868
Empirical Exercises
10.26. Klein and Goldberger attempted to fit the following regression model to the U.S.
economy:
Y
i
=
β
1
+
β
2
X
2
i
+
β
3
X
3
i
+
β
4
X
4
i
+
u
i
where 
Y
=
consumption, 
X
2
=
wage income, 
X
3
=
nonwage, nonfarm income, and
X
4

farm income. But since 
X
2

X
3
, and 
X
4
are expected to be highly collinear,
they obtained estimates of 
β
3
and 
β
4
from cross-sectional analysis as follows:
guj75772_ch10.qxd 12/08/2008 02:45 PM Page 357


358
Part Two
Relaxing the Assumptions of the Classical Model
β
3
=
0.75
β
2
and 
β
4
=
0
.
625
β
2
.
Using these estimates, they reformulated their
consumption function as follows:
Y
i
=
β
1
+
β
2
(
X
2
i
+
0
.
75
X
3
i
+
0
.
625
X
4
i
)
+
u
i
=
β
1
+
β
2
Z
i
+
u
i
where 
Z
i
=
X
2
i
+
0
.
75
X
3
i
+
0
.
625
X
4
i
.
a.
Fit the modified model to the data in Table 10.12 and obtain estimates of 
β
1
to 
β
4
.
b.
How would you interpret the variable 
Z
?
10.27. Table 10.13 gives data on imports, GDP, and the Consumer Price Index (CPI) for
the United States over the period 1975–2005. You are asked to consider the follow-
ing model:
ln Imports
t
=
β
1
+
β
2
ln GDP
t
+
β
3
ln CPI
t
+
u
t
a.
Estimate the parameters of this model using the data given in the table.
b.
Do you suspect that there is multicollinearity in the data?
c.
Regress: (1) ln Imports
t
=
A
1
+
A
2
ln GDP
t
(2) ln Imports
t
=
B
1
+
B
2
ln CPI
t
(3) ln GDP
t
=
C
1
+
C
2
ln CPI
t
On the basis of these regressions, what can you say about the nature of mul-
ticollinearity in the data?
TABLE 10.12
Year
Y
X
2
X
3
X
4
Year
Y
X
2
X
3
X
4
1936
62.8
43.41
17.10
3.96
1946
95.7
76.73
28.26
9.76
1937
65.0
46.44
18.65
5.48
1947
98.3
75.91
27.91
9.31
1938
63.9
44.35
17.09
4.37
1948
100.3
77.62
32.30
9.85
1939
67.5
47.82
19.28
4.51
1949
103.2
78.01
31.39
7.21
1940
71.3
51.02
23.24
4.88
1950
108.9
83.57
35.61
7.39
1941
76.6
58.71
28.11
6.37
1951
108.5
90.59
37.58
7.98
1945*
86.3
87.69
30.29
8.96
1952
111.4
95.47
35.17
7.42
*The data for the war years 1942–1944 are missing. The data for other years are billions of 1939 dollars.
Source: L. R. Klein and A. S.
Goldberger, 
An Economic
Model of the United States,
1929–1952
, North Holland
Publishing Company,
Amsterdam, 1964, p. 131.
TABLE 10.13
U.S. Imports, GDP,
and CPI, 1975–2005
(For all urban
consumers; 1982–84 =
100, except as noted)
Year
CPI
GDP
Imports
Year
CPI
GDP
Imports
1975
53.8
1,638.3
98185
1991
136.2
5,995.9
491020
1976
56.9
1,825.3
124228
1992
140.3
6,337.7
536528
1977
60.6
2,030.9
151907
1993
144.5
6,657.4
589394
1978
65.2
2,294.7
176002
1994
148.2
7,072.2
668690
1979
72.6
2,563.3
212007
1995
152.4
7,397.7
749374
1980
82.4
2,789.5
249750
1996
156.9
7,816.9
803113
1981
90.9
3,128.4
265067
1997
160.5
8,304.3
876470
1982
96.5
3,225.0
247642
1998
163.0
8,747.0
917103
1983
99.6
3,536.7
268901
1999
166.6
9,268.4
1029980
1984
103.9
3,933.2
332418
2000
172.2
9,817.0
1224408
1985
107.6
4,220.3
338088
2001
177.1
10,128.0
1145900
1986
109.6
4,462.8
368425
2002
179.9
10,469.6
1164720
1987
113.6
4,739.5
409765
2003
184.0
10,960.8
1260717
1988
118.3
5,103.8
447189
2004
188.9
11,712.5
1472926
1989
124.0
5,484.4
477665
2005
195.3
12,455.8
1677371
1990
130.7
5,803.1
498438
Source: Department of Labor,
Bureau of Labor Statistics.
guj75772_ch10.qxd 03/09/2008 07:08 PM Page 358


Chapter 10
Multicollinearity: What Happens If the Regressors Are Correlated?
359
d.
Suppose there is multicollinearity in the data but
ˆ
β
2
and
ˆ
β
3
are individually sig-
nificant at the 5 percent level and the overall
F
test is also significant. In this case
should we worry about the collinearity problem?
10.28. Refer to Exercise 7.19 about the demand function for chicken in the United States.
a.
Using the log–linear, or double-log, model, estimate the various auxiliary re-
gressions. How many are there?
b.
From these auxiliary regressions, how do you decide which regressor(s) is
highly collinear? Which test do you use? Show the details of your calculations.
c.
If there is significant collinearity in the data, which variable(s) would you drop
to reduce the severity of the collinearity problem? If you do that, what econo-
metric problems do you face?
d.
Do you have any suggestions, other than dropping variables, to ameliorate the
collinearity problem? Explain.
10.29. Table 10.14 gives data on new passenger cars sold in the United States as a function
of several variables.
a.
Develop a suitable linear or log–linear model to estimate a demand function for
automobiles in the United States.
b.
If you decide to include all the regressors given in the table as explanatory vari-
ables, do you expect to face the multicollinearity problem? Why?
c.
If you do expect to face the multicollinearity problem, how will you go about
resolving the problem? State your assumptions clearly and show all the calcula-
tions explicitly.
10.30. To assess the feasibility of a guaranteed annual wage (negative income tax), the
Rand Corporation conducted a study to assess the response of labor supply (average
TABLE 10.14
Passenger Car Data 
Year
Y
X
2
X
3
X
4
X
5
X
6
1971
10,227
112.0
121.3
776.8
4.89
79,367
1972
10,872
111.0
125.3
839.6
4.55
82,153
1973
11,350
111.1
133.1
949.8
7.38
85,064
1974
8,775
117.5
147.7
1,038.4
8.61
86,794
1975
8,539
127.6
161.2
1,142.8
6.16
85,846
1976
9,994
135.7
170.5
1,252.6
5.22
88,752
1977
11,046
142.9
181.5
1,379.3
5.50
92,017
1978
11,164
153.8
195.3
1,551.2
7.78
96,048
1979
10,559
166.0
217.7
1,729.3
10.25
98,824
1980
8,979
179.3
247.0
1,918.0
11.28
99,303
1981
8,535
190.2
272.3
2,127.6
13.73
100,397
1982
7,980
197.6
286.6
2,261.4
11.20
99,526
1983
9,179
202.6
297.4
2,428.1
8.69
100,834
1984
10,394
208.5
307.6
2,670.6
9.65
105,005
1985
11,039
215.2
318.5
2,841.1
7.75
107,150
1986
11,450
224.4
323.4
3,022.1
6.31
109,597
Y
=
new passenger cars sold (thousands), seasonally unadjusted.
X
2
=
new cars, Consumer Price Index, 1967
=
100, seasonally unadjusted.
X
3
=
Consumer Price Index, all items, all urban consumers, 1967 
=
100, seasonally unadjusted.
X
4
=
the personal disposable income (PDI), billions of dollars, unadjusted for seasonal variation.
X
5
=
the interest rate, percent, finance company paper placed directly.
X
6
=
the employed civilian labor force (thousands), unadjusted for seasonal variation.
Source:
Business Statistics,
1986,
A Supplement to the
Current Survey of Business,
U.S. Department of Commerce.
guj75772_ch10.qxd 23/08/2008 04:47 PM Page 359


360
Part Two
Relaxing the Assumptions of the Classical Model
TABLE 10.15
Hours of Work and
Other Data for
35 Groups
Observation
Hours
Rate
ERSP
ERNO
NEIN
Assets
Age
DEP
School
1
2157
2.905
1121
291
380
7250
38.5
2.340
10.5
2
2174
2.970
1128
301
398
7744
39.3
2.335
10.5
3
2062
2.350
1214
326
185
3068
40.1
2.851
8.9
4
2111
2.511
1203
49
117
1632
22.4
1.159
11.5
5
2134
2.791
1013
594
730
12710
57.7
1.229
8.8
6
2185
3.040
1135
287
382
7706
38.6
2.602
10.7
7
2210
3.222
1100
295
474
9338
39.0
2.187
11.2
8
2105
2.493
1180
310
255
4730
39.9
2.616
9.3
9
2267
2.838
1298
252
431
8317
38.9
2.024
11.1
10
2205
2.356
885
264
373
6789
38.8
2.662
9.5
11
2121
2.922
1251
328
312
5907
39.8
2.287
10.3
12
2109
2.499
1207
347
271
5069
39.7
3.193
8.9
13
2108
2.796
1036
300
259
4614
38.2
2.040
9.2
14
2047
2.453
1213
297
139
1987
40.3
2.545
9.1
15
2174
3.582
1141
414
498
10239
40.0
2.064
11.7
16
2067
2.909
1805
290
239
4439
39.1
2.301
10.5
17
2159
2.511
1075
289
308
5621
39.3
2.486
9.5
18
2257
2.516
1093
176
392
7293
37.9
2.042
10.1
19
1985
1.423
553
381
146
1866
40.6
3.833
6.6
20
2184
3.636
1091
291
560
11240
39.1
2.328
11.6
21
2084
2.983
1327
331
296
5653
39.8
2.208
10.2
22
2051
2.573
1194
279
172
2806
40.0
2.362
9.1
23
2127
3.262
1226
314
408
8042
39.5
2.259
10.8
24
2102
3.234
1188
414
352
7557
39.8
2.019
10.7
25
2098
2.280
973
364
272
4400
40.6
2.661
8.4
26
2042
2.304
1085
328
140
1739
41.8
2.444
8.2
27
2181
2.912
1072
304
383
7340
39.0
2.337
10.2
28
2186
3.015
1122
30
352
7292
37.2
2.046
10.9
29
2188
3.010
990
366
374
7325
38.4
2.847
10.6
30
2077
1.901
350
209
95
1370
37.4
4.158
8.2
31
2196
3.009
947
294
342
6888
37.5
3.047
10.6
32
2093
1.899
342
311
120
1425
37.5
4.512
8.1
33
2173
2.959
1116
296
387
7625
39.2
2.342
10.5
34
2179
2.971
1128
312
397
7779
39.4
2.341
10.5
35
2200
2.980
1126
204
393
7885
39.2
2.341
10.6
Notes:
Hours 
=
average hours worked during the year.
Rate 
=
average hourly wage (dollars).
ERSP 
=
average yearly earnings of spouse (dollars).
ERNO 
=
average yearly earnings of other family members (dollars).
NEIN 
=
average yearly nonearned income.
Assets 
=
average family asset holdings (bank account, etc.) (dollars).
Age 
=
average age of respondent.
Dep 
=
average number of dependents.
School 
=
average highest grade of school completed.
Source: D. H. Greenberg and
M. Kosters, 
Income Guarantees
and the Working Poor,
Rand
Corporation, R-579-OEO,
December 1970.
hours of work) to increasing hourly wages.
*
The data for this study were
drawn from a national sample of 6,000 households with a male head earning less
than $15,000 annually. The data were divided into 39 demographic groups for
analysis. These data are given in Table 10.15. Because data for four demographic
groups were missing for some variables, the data given in the table refer to only
35 demographic groups. The definitions of the various variables used in the analy-
sis are given at the end of the table.
*
D. H. Greenberg and M. Kosters, 
Income Guarantees and the Working Poor,
Rand Corporation, R-579-
OEO, December 1970.
guj75772_ch10.qxd 12/08/2008 08:07 PM Page 360


Chapter 10
Multicollinearity: What Happens If the Regressors Are Correlated?
361
a.
Regress average hours worked during the year on the variables given in the table
and interpret your regression.
b.
Is there evidence of multicollinearity in the data? How do you know?
c.
Compute the variance inflation factors (VIF) and TOL measures for the various
regressors.
d.
If there is the multicollinearity problem, what remedial action, if any, would
you take?
e.
What does this study tell about the feasibility of a negative income tax?
10.31. Table 10.16 gives data on the crime rate in 47 states in the United States for 1960.
Try to develop a suitable model to explain the crime rate in relation to the 14
socioeconomic variables given in the table. Pay particular attention to the collinearity
problem in developing your model.
10.32. Refer to the Longley data given in Section 10.10. Repeat the regression given in the
table there by omitting the data for 1962; that is, run the regression for the period
1947–1961. Compare the two regressions. What general conclusion can you draw
from this exercise?
10.33.
Updated Longley data. 
We have extended the data given in Section 10.10 to include
observations from 1959–2005. The new data are in Table 10.17. The data pertain to
Y
=
number of people employed, in thousands; 
X
1
=
GNP implicit price deflator;
X
2
=
GNP, millions of dollars; 
X
3
=
number of people unemployed in thousands;
X
4
=
number of people in the armed forces in thousands; 
X
5
=
noninstitutionalized
population over 16 years of age; and 
X
6
=
year, equal to 1 in 1959, 2 in 1960, and
47 in 2005.
a.
Create scatterplots as suggested in the chapter to assess the relationships
between the independent variables. Are there any strong relationships? Do they
seem linear?
b.
Create a correlation matrix. Which variables seem to be the most related to each
other, not including the dependent variable?
c.
Run a standard OLS regression to predict the number of people employed in
thousands. Do the coefficients on the independent variables behave as you would
expect?
d.
Based on the above results, do you believe these data suffer from multicollinearity?
*
10.34. As cheese ages, several chemical processes take place that determine the taste of the
final product. The data given in Table 10.18 pertain to concentrations of various
chemicals in a sample of 30 mature cheddar cheeses and subjective measures of
taste for each sample. The variables acetic and H
2
S are the natural logarithm of con-
centration of acetic acid and hydrogen sulfide, respectively. The variable lactic has
not been log-transformed.
a.
Draw a scatterplot of the four variables.
b.
Perform a bivariate regression of taste on acetic and H
2
S and interpret your results.
c.
Perform a bivariate regression of taste on lactic and H
2
S, and interpret the results.
d.
Perform a multiple regression of taste on acetic, H
2
S, and lactic. Interpret your re-
sults.
e.
Knowing what you know about multicollinearity, how would you decide among
these regressions?
f.
What overall conclusions can you draw from your analysis?
*
Optional. 
guj75772_ch10.qxd 27/08/2008 12:05 PM Page 361



Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   337   338   339   340   341   342   343   344   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish