The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet224/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   220   221   222   223   224   225   226   227   ...   868
TABLE 7.12
(
Continued
)
guj75772_ch07.qxd 27/08/2008 10:53 AM Page 226


Chapter 7
Multiple Regression Analysis: The Problem of Estimation
227
500
450
400
350
250
300
150
200
50
100
0
1/3/95
2/27/95
4/24/95
6/19/95
8/14/95
10/9/95
12/4/95
1/29/96
3/25/96
5/20/96
7/15/96
9/9/96
11/4/96
12/30/96
2/24/97
4/21/97
6/16/97
8/11/97
10/6/97
12/1/97
1/26/98
3/23/98
5/18/98
7/13/98
9/8/98
11/2/98
12/28/98
2/22/99
4/19/99
6/14/99
8/9/99
10/4/99
11/29/99
Price
Date
FIGURE 7.4
Qualcomm stock
prices over time.
c.
Finally, fit the following cubic or 
third-degree polynomial:
Y
i
=
β
0
+
β
1
X
i
+
β
2
X
2
i
+
β
3
X
3
i
+
u
i
where 
Y
=
stock price and 
X
=
time. Which model seems to be the best estimator
for the stock prices?
Appendix 
7A
7A.1
Derivation of OLS Estimators
Given in Equations (7.4.3) to (7.4.5)
Differentiating the equation
ˆ
u
2
i
=
(
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− ˆ
β
3
X
3
i
)
2
(7.4.2)
partially with respect to the three unknowns and setting the resulting equations to zero, we obtain

ˆ
u
2
i

ˆ
β
1
=
2
(
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− ˆ
β
3
X
3
i
)(

1)
=
0

ˆ
u
2
i

ˆ
β
2
=
2
(
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− ˆ
β
3
X
3
i
)(

X
2
i
)
=
0

ˆ
u
2
i

ˆ
β
3
=
2
(
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− ˆ
β
3
X
3
i
)(

X
3
i
)
=
0
Simplifying these, we obtain Eqs. (7.4.3) to (7.4.5).
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 227


228
Part One
Single-Equation Regression Models
In passing, note that the three preceding equations can also be written as
ˆ
u
i
=
0
ˆ
u
i
X
2
i
=
0
(Why?)
ˆ
u
i
X
3
i
=
0
which show the properties of the least-squares fit, namely, that the residuals sum to zero and that they
are uncorrelated with the explanatory variables 
X
2
and 
X
3
.
Incidentally, notice that to obtain the OLS estimators of the
k
-variable linear regression model
(7.4.20) we proceed analogously. Thus, we first write
ˆ
u
2
i
=
(
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− · · · − ˆ
β
k
X
ki
)
2
Differentiating this expression partially with respect to each of the 
k
unknowns, setting the resulting
equations equal to zero, and rearranging, we obtain the following 
k
normal equations in the 
k
unknowns:
Y
i
=
n
ˆ
β
1
+ ˆ
β
2
X
2
i
+ ˆ
β
3
X
3
i
+ · · · + ˆ
β
k
X
ki
Y
i
X
2
i
= ˆ
β
1
X
2
i
+ ˆ
β
2
X
2
2
i
+ ˆ
β
3
X
2
i
X
3
i
+ · · · + ˆ
β
k
X
2
i
X
ki
Y
i
X
3
i
= ˆ
β
1
X
3
i
+ ˆ
β
2
X
2
i
X
3
i
+ ˆ
β
3
X
2
3
i
+ · · · + ˆ
β
k
X
3
i
X
ki
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y
i
X
ki
= ˆ
β
1
X
ki
+ ˆ
β
2
X
2
i
X
ki
+ ˆ
β
3
X
3
i
X
ki
+ · · · + ˆ
β
k
X
2
ki
Or, switching to small letters, these equations can be expressed as
y
i
x
2
i
= ˆ
β
2
x
2
2
i
+ ˆ
β
3
x
2
i
x
3
i
+ · · · + ˆ
β
k
x
2
i
x
ki
y
i
x
3
i
= ˆ
β
2
x
2
i
x
3
i
+ ˆ
β
3
x
2
3
i
+ · · · + ˆ
β
k
x
3
i
x
ki
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y
i
x
ki
= ˆ
β
2
x
2
i
x
ki
+ ˆ
β
3
x
3
i
x
ki
+ · · · + ˆ
β
k
x
2
ki
It should further be noted that the 
k
-variable model also satisfies these equations:
ˆ
u
i
=
0
ˆ
u
i
X
2
i
=
ˆ
u
i
X
3
i
= · · · =
ˆ
u
i
X
ki
=
0
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 228


Chapter 7
Multiple Regression Analysis: The Problem of Estimation
229
7A.2
Equality between the Coefficients of PGNP 
in Equations (7.3.5) and (7.6.2)
Letting 
Y
=
CM,
X
2
=
PGNP, and
X
3
=
FLR and using the deviation form, write
y
i
=
b
1 3
x
3
i
+ ˆ
u
1
i
(1)
x
2
i
=
b
2 3
x
3
i
+ ˆ
u
2
i
(2)
Now regress 
ˆ
u
1
on
ˆ
u
2
to obtain:
a
1
=
ˆ
u
1
i
ˆ
u
2
i
ˆ
u
2
2
i
= −
0
.
0056
(for our example)
(3)
Note that because the 
ˆ
u
’s are residuals, their mean values are zero. Using (1) and (2), we can write
(3) as
a
1
=
(
y
i

b
1 3
x
3
i
)(
x
2
i

b
2 3
x
3
i
)
(
x
2
i

b
2 3
x
3
i
)
2
(4)
Expand the preceding expression, and note that
b
2 3
=
x
2
i
x
3
i
x
2
3
i
(5)
and
b
1 3
=
y
i
x
3
i
x
2
3
i
(6)
Making these substitutions into (4), we get
ˆ
β
2
=
y
i
x
2
i
x
2
3
i

y
i
x
3
i
x
2
i
x
3
i
x
2
2
i
x
2
3
i

x
2
i
x
3
i
2
(7.4.19)'>(7.4.7)

0.0056
(for our example)
7A.3
Derivation of Equation (7.4.19)
Recall that
ˆ
u
i
=
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− ˆ
β
3
X
3
i
which can also be written as
ˆ
u
i
=
y
i
− ˆ
β
2
x
2
i
− ˆ
β
3
x
3
i
where small letters, as usual, indicate deviations from mean values.
Now
ˆ
u
2
i
=
(
ˆ
u
i
ˆ
u
i
)
=
ˆ
u
i
(
y
i
− ˆ
β
2
x
2
i
− ˆ
β
3
x
3
i
)
=
ˆ
u
i
y
i
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 229


230
Part One
Single-Equation Regression Models
where use is made of the fact that 
ˆ
u
i
x
2
i
=
ˆ
u
i
x
3
i
=
0
.
(Why?) Also
ˆ
u
i
y
i
=
y
i
ˆ
u
i
=
y
i
(
y
i
− ˆ
β
2
x
2
i
− ˆ
β
3
x
3
i
)
that is,
ˆ
u
2
i
=
y
2
i
− ˆ
β
2
y
i
x
2
i
− ˆ
β
3
y
i
x
3
i
(7.4.19)
which is the required result.
7A.4
Maximum Likelihood Estimation
of the Multiple Regression Model
Extending the ideas introduced in Chapter 4, Appendix 4A, we can write the log-likelihood function
for the 
k
-variable linear regression model (7.4.20) as
ln
L
= −
n
2
ln
σ
2

n
2
ln (2
π
)

1
2
(
Y
i

β
1

β
2
X
2
i
− · · · −
β
k
X
ki
)
2
σ
2
Differentiating this function partially with respect to 
β
1
,
β
2
,
. . .
,
β
k
and
σ
2
, we obtain the following
(
K
+
1) equations:

ln
L
∂β
1
= −
1
σ
2
(
Y
i

β
1

β
2
X
2
i
− · · · −
β
k
X
ki
)(

1)
(1)

ln
L
∂β
2
= −
1
σ
2
(
Y
i

β
1

β
2
X
2
i
− · · · −
β
k
X
ki
)(

X
2
i
)
(2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ln
L
∂β
k
= −
1
σ
2
(
Y
i

β
1

β
2
X
2
i
− · · · −
β
k
X
ki
)(

X
ki
)

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   220   221   222   223   224   225   226   227   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish