The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


x [regressors] may be informative. 15 7.9



Download 5,05 Mb.
Pdf ko'rish
bet211/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   207   208   209   210   211   212   213   214   ...   868
x
[regressors] may be informative.
15
7.9
The Cobb–Douglas Production Function:
More on Functional Form
In Section 6.4 we showed how with appropriate transformations we can convert nonlinear
relationships into linear ones so that we can work within the framework of the classical lin-
ear regression model. The various transformations discussed there in the context of the
two-variable case can be easily extended to multiple regression models. We demonstrate
transformations in this section by taking up the multivariable extension of the two-variable
log–linear model; others can be found in the exercises and in the illustrative examples
discussed throughout the rest of this book. The specific example we discuss is the cele-
brated 
Cobb–Douglas production function
of production theory.
The Cobb–Douglas production function, in its stochastic form, may be expressed as
Y
i
=
β
1
X
β
2
2
i
X
β
3
3
i
e
u
i
(7.9.1)
where 
Y
=
output
X
2
=
labor input
X
3
=
capital input
u
=
stochastic disturbance term
e
=
base of natural logarithm
From Eq. (7.9.1) it is clear that the relationship between output and the two inputs is
nonlinear. However, if we log-transform this model, we obtain:
ln
Y
i
=
ln
β
1
+
β
2
ln
X
2
i
+
β
3
ln
X
3
i
+
u
i
=
β
0
+
β
2
ln
X
2
i
+
β
3
ln
X
3
i
+
u
i
(7.9.2)
where 
β
0
=
ln
β
1
.
Thus written, the model is linear in the parameters 
β
0
,
β
2
, and
β
3
and is therefore a lin-
ear regression model. Notice, though, it is nonlinear in the variables 
Y
and 
X
but linear in
the logs of these variables. In short, Eq. (7.9.2) is a 
log-log, double-log,
or 
log–linear
model,
the multiple regression counterpart of the two-variable log–linear model (6.5.3).
The properties of the Cobb–Douglas production function are quite well known:
1.
β
2
is the (partial) elasticity of output with respect to the labor input, that is, it measures
the percentage change in output for, say, a 1 percent change in the labor input, holding the cap-
ital input constant (see Exercise 7.9).
2. Likewise, 
β
3
is the (partial) elasticity of output with respect to the capital input, hold-
ing the labor input constant.
3. The sum (
β
2
+
β
3
) gives information about the 
returns to scale,
that is, the response
of output to a proportionate change in the inputs. If this sum is 1, then there are 
constant
returns to scale,
that is, doubling the inputs will double the output, tripling the inputs will
15
Arther S. Goldberger, op. cit., pp. 177–178.
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 207


208
Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   207   208   209   210   211   212   213   214   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish