The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet116/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   112   113   114   115   116   117   118   119   ...   868
interval estimation.
To be more specific, assume that we want to find out how “close,” say, 
ˆ
β
2
is to 
β
2
. For
this purpose we try to find out two positive numbers 
δ
and 
α
, the latter lying between 0 and
1, such that the probability that the 
random interval
(
ˆ
β
2

δ
,
ˆ
β
2
+
δ
) contains the true 
β
2
is 1

α.
Symbolically,
Pr (
ˆ
β
2

δ

β
2
≤ ˆ
β
2
+
δ
)
=
1

α
(5.2.1)
Such an interval, if it exists, is known as a 
confidence interval;
1

α
is known as the
confidence coefficient;
and 
α
(0
< α <
1) is known as the 
level of significance.
2
The end-
points of the confidence interval are known as the
confidence limits
(also known as
critical
values),
ˆ
β
2

δ
being the 
lower confidence
limit
and
ˆ
β
2
+
δ
the 
upper confidence
limit
.
In passing, note that in practice 
α
and 1

α
are often expressed in percentage forms as
100
α
and 100(1

α
) percent.
Equation 5.2.1 shows that an 
interval estimator,
in contrast to a point estimator, is an
interval constructed in such a manner that it has a specified probability 1

α
of including
within its limits the true value of the parameter. For example, if 
α
=
0.05, or 5 percent,
Eq. (5.2.1) would read: The probability that the (random) interval shown there includes the
true 
β
2
is 0.95, or 95 percent. The interval estimator thus gives a range of values within
which the true 
β
2
may lie.
It is very important to know the following aspects of interval estimation:
1. Eq. (5.2.1) does not say that the probability of 
β
2
lying between the given limits is
1

α
. Since 
β
2
, although an unknown, is assumed to be some fixed number, either it lies
in the interval or it does not. What Eq. (5.2.1) states is that, for the method described in this
chapter, the probability of constructing an interval that contains 
β
2
is 1

α
.
2. The interval in Eq. (5.2.1) is a 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   112   113   114   115   116   117   118   119   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish