This journal is © The Royal Society of Chemistry 2021
J. Mater. Chem. C
, 2021,
9
, 14--40 |
31
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
B. H. L. would like to acknowledge financial support from
Natural Science and Engineering Research Council of Canada
(NSERC) and Canada Research Chair (CRC) programs.
References
1 D. Hengevoss, C. Baumgartner, G. Nisato and C. Hugi, Life
Cycle Assessment and Eco-Efficiency of Prospective, Flexible
Tandem Organic Photovoltaic Module,
Sol. Energy
, 2016,
137
, 317–327, DOI: 10.1016/j.solener.2016.08.025.
2 S. Lizin, S. Van Passel, E. De Schepper, W. Maes, L. Lusten,
J. Manca and D. Vanderzande, Life Cycle Analyses of
Organic Photovoltaics: A Review,
Energy Environ. Sci.
,
2013,
6
, 3136–3149, DOI: 10.1039/c3ee42653j.
3 Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu,
Z. Xiao, K. Sun, S. Yang, X. Zhang and L. Ding, 18%
Efficiency Organic Solar Cells,
Sci. Bull.
, 2020, 1–10, DOI:
10.1016/j.scib.2020.01.001.
4 G. A. Chamberlain, Organic Solar Cells: A Review,
Sol.
Cells
, 1983,
8
, 47–83, DOI: 10.1016/0379-6787(83)90039-X.
5 R. C. Jemison and R. D. Mccullough, Techniques for the
Molecular Design of Push-Pull Polymers towards Enhanced
Organic Photovoltaic Performance,
ACS Symp. Ser.
, 2014,
1161
, 71–109, DOI: 10.1021/bk-2014-1161.ch004.
6 C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R.
Marder and X. Zhan, Non-Fullerene Acceptors for Organic
Solar Cells,
Nat. Rev. Mater.
, 2018,
3
(18003), 1–19, DOI:
10.1038/natrevmats.2018.3.
7 C. W. Tang, Two-Layer Organic Photovoltaic Cell,
Appl.
Phys. Lett.
, 1986,
48
(2), 183–185, DOI: 10.1063/1.96937.
8 O. V. Mikhnenko, P. W. M. Blom and T. Nguyen, Exciton
Diffusion in Organic Semiconductors,
Energy Environ. Sci.
,
2015,
8
, 1867–1888, DOI: 10.1039/c5ee00925a.
9 B. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Plastic
Solar Cells**,
Adv. Funct. Mater.
, 2001,
11
(1), 15–26, DOI:
10.1002/1616-3028(200102)11:1
o
15::AID-ADFM15
4
3.0.CO;2-A.
10 M. T. Dang, L. Hirsch and G. Wantz, P3HT:PCBM, Best
Seller in Polymer Photovoltaic Research,
Adv. Mater.
, 2011,
23
(31), 3597–3602, DOI: 10.1002/adma.201100792.
11 O. Oklobia and T. S. Shafai, A Study of Donor/Acceptor
Interfaces in a Blend of P3HT/PCBM Solar Cell: Effects of
Annealing and PCBM Loading on Optical and Electrical
Properties,
Solid-State Electron.
, 2013,
87
, 64–68, DOI:
10.1016/j.sse.2013.05.005.
12 B. Gholamkhass and P. Servati, Solvent-Vapor Induced
Morphology Reconstruction for Efficient PCDTBT Based
Polymer Solar Cells,
Org. Electron.
, 2013,
14
(9), 2278–2283,
DOI: 10.1016/j.orgel.2013.05.014.
13 Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang,
T. P. Russell and Y. Cao, Single-Junction Polymer Solar
Cells with High Efficiency and Photovoltage,
Nat. Photo-
nics
, 2015,
9
(3), 174–179, DOI: 10.1038/nphoton.2015.6.
14 J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade and H. Yan,
Efficient Organic Solar Cells Processed from Hydrocarbon
Solvents,
Nat. Energy
, 2016,
1
(15027), 1–7, DOI: 10.1038/
NENERGY.2015.27.
15 F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H.
Verhees, J. M. Kroon and J. C. Hummelen, Increasing the
Open Circuit Voltage of Bulk-Heterojunction Solar Cells by
Raising the LUMO Level of the Acceptor,
Org. Lett.
, 2007,
9
(4), 551–554, DOI: 10.1021/ol062666p.
16 Z. Xu, F. Pan, C. Sun, S. Hong, S. Chen, C. Yang, Z. Zhang,
Y. Liu, T. P. Russell, Y. Li and D. Wang, Understanding the
Morphology of High-Performance Solar Cells Based on a
Low-Cost Polymer Donor,
ACS Appl. Mater. Interfaces
, 2020,
12
, 9537–9544, DOI: 10.1021/acsami.9b22666.
17 J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu,
C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao,
J. Ulanski, Y. Li and Y. Zou, Single-Junction Organic Solar
Cell with over 15% Efficiency Using Fused-Ring Acceptor
with Electron-Deficient Core Single-Junction,
Joule
, 2019,
3
, 1–12, DOI: 10.1016/j.joule.2019.01.004.
18 T. Wang, J. Qin, Z. Xiao, X. Meng, C. Zuo, B. Yang, H. Tan,
J. Yang, S. Yang, K. Sun, S. Xie and L. Ding, Short
Communication A 2.16 EV Bandgap Polymer Donor Gives
16% Power Conversion Efficiency,
Sci. Bull.
, 2020,
65
(3),
179–181, DOI: 10.1016/j.scib.2019.11.030.
19 C. J. Brabec, M. Heeney, I. McCulloch and J. Nelson,
Influence of Blend Microstructure on Bulk Heterojunction
Organic Photovoltaic Performance,
Chem. Soc. Rev.
, 2011,
40
, 1185–1199, DOI: 10.1039/c0cs00045k.
20 C. J. Schaffer, C. M. Palumbiny, M. A. Niedermeier,
C. Jendrzejewski, G. Santoro, S. V. Roth and P. Mu
¨ller-
Buschbaum, A Direct Evidence of Morphological Degradation
on a Nanometer Scale in Polymer Solar Cells,
Adv. Mater.
,
2013,
25
(46), 6760–6764, DOI: 10.1002/adma.201302854.
21 Y. Zhang, Y. Xu, M. J. Ford, F. Li, J. Sun and X. Ling,
Thermally Stable All-Polymer Solar Cells with High
Tolerance on Blend Ratios,
Adv. Energy Mater.
, 2018,
8
(1800029), 1–10, DOI: 10.1002/aenm.201800029.
22 A. L. Ayzner, C. J. Tassone, S. H. Tolbert and B. J. Schwartz,
Reappraising the Need for Bulk Heterojunctions in Polymer -
Fullerene Photovoltaics: The Role of Carrier Transport in
All-Solution-Processed P3HT/PCBM Bilayer Solar Cells,
J. Phys.
Chem. C
, 2009,
113
, 20050–20060, DOI: 10.1021/jp9050897.
23 A. J. Clulow, C. Tao, K. H. Lee, M. Velusamy, J. A. Mcewan,
P. E. Shaw, N. L. Yamada, M. James, P. L. Burn, I. R. Gentle
and P. Meredith, Time-Resolved Neutron Reflectometry
and Photovoltaic Device Studies on Sequentially Deposited
PCDTBT-Fullerene Layers,
Langmuir
, 2014,
30
, 11474–11484,
DOI: 10.1021/la5020779.
24 B. Yang, Y. Yuan and J. Huang, Reduced Bimolecular
Charge Recombination Loss in Thermally Annealed Bilayer
Heterojunction Photovoltaic Devices with Large External
Quantum Efficiency and Fill Factor,
J. Phys. Chem. C
, 2014,
118
, 5196–5202, DOI: 10.1021/jp500547j.
Review
Journal of Materials Chemistry C
Open Access Article. Published on 22 December 2020. Downloaded on 5/17/2022 7:03:18 PM.
This
article is licensed under a
Creative Commons Attribution 3.0 Unported Licence.
Do'stlaringiz bilan baham: