Заключение
635
ceedings of the Computer Vision and Pattern Recognition Conference (CVPR’07).
IEEE Press.
600. Ranzato, M., Boureau, Y., and LeCun, Y. (2008). Sparse
feature learning for deep
belief networks. In NIPS’2007.
601. Ranzato, M., Krizhevsky, A., and Hinton, G. E. (2010a). Factored 3-way restricted
Boltzmann machines for modeling natural images. In Proceedings of AISTATS 2010.
602. Ranzato, M., Mnih, V., and Hinton, G. (2010b). Generating more realistic images
using gated MRFs. In NIPS’2010.
603. Rao, C. (1945). Information and the accuracy attainable in the estimation of statisti-
cal parameters. Bulletin of the Calcutta Mathematical Society, 37, 81–89.
604. Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-
supervised learning with ladder network. arXiv preprint arXiv:1507.02672.
605. Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS’2011.
606.
Reichert, D. P., Seri
è
s, P., and Storkey, A. J. (2011). Neuronal adaptation for sampling
based probabilistic inference in perceptual bistability. In Advances in Neural Infor-
mation Processing Systems, pages 2357–2365.
607. Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropaga-
tion and approximate inference in deep generative models. In ICML’2014. Preprint:
arXiv:1401.4082.
608. Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011a). Contractive au-
to-encoders: Explicit invariance during feature extraction. In ICML’2011.
609. Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X.
(2011b). Higher order contractive auto-encoder. In ECML PKDD.
610. Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and Muller, X. (2011c). The manifold
tangent classifier. In NIPS’2011.
611. Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for
sampling contractive auto-encoders. In ICML’2012.
612. Ringach, D. and Shapley, R. (2004). Reverse correlation in neurophysiology. Cogni-
tive Science, 28(2), 147–166.
613. Roberts, S. and Everson, R. (2001). Independent component analysis: principles and
practice. Cambridge University Press.
614.
Robinson, A. J. and Fallside, F. (1991). A recurrent error propagation network speech
recognition system. Computer Speech and Language, 5(3), 259–274.
615. Rockafellar, R. T. (1997). Convex analysis. princeton landmarks in mathematics.
616. Romero, A., Ballas, N., Ebrahimi Kahou, S., Chassang, A., Gatta, C., and Bengio, Y.
(2015). Fitnets: Hints for thin deep nets. In ICLR’2015, arXiv:1412.6550.
617. Rosen, J. B. (1960). The gradient projection method for nonlinear programming.
Part I. Linear constraints. Journal of the Society for Industrial and Applied Math-
ematics, 8(1), pp. 181–217.
618. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain.
Psychological Review, b, 386–408.
619. Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York.
620. Roweis, S. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500).
621. Roweis, S., Saul, L., and Hinton, G. (2002). Global coordination of local linear mod-
els. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural In-
formation Processing Systems 14 (NIPS’01),
Cambridge, MA. MIT Press.