Methods and guidelines for effective model calibration



Download 0,49 Mb.
Pdf ko'rish
bet31/55
Sana28.05.2022
Hajmi0,49 Mb.
#613965
1   ...   27   28   29   30   31   32   33   34   ...   55
Bog'liq
EffectiveCalibration WRIR98-4005

s
y
i
s
y
i
s
y
i


47
measurement is within 0.125 ft
3
/s (5 percent) of the true value. Assuming that the errors are inde-
pendent and normally distributed, the standard deviation of the first measurement is calculated us-
ing the method described above from 1.65 
= 0.15 ft
3
/s, so 
= 0.091. The standard deviation 
of the second measurement is calculated from 1.96
= 0.125 ft
3
/s, so 
= 0.064. The uncer-
tainty of the difference between the two flows needs to be calculated using their variances, which 
can be calculated by squaring the standard deviations to produce 
= 0.0083 (ft
3
/s)
2
and 

0.0041 (ft
3
/s)
2
. The variance of the loss of 0.5 ft
3
/s equals 

= 0.0124 (ft
3
/s)
2
. The coef-
ficient of variation (standard deviation, 0.0124
1/2
, divided by the loss, 0.5 ft
3
/s) for the loss in 
streamflow is, therefore, 0.22, or 22 percent. In UCODE and MODFLOWP, the variance, standard 
deviation, or coefficient of variation could be specified by the user. The choice generally is based 
on convenience.
In some circumstances there is a series of measurements from which differences are calcu-
lated. For example, there may be three streamflow measurements, q1, q2, and q3, along the length 
of a stream with gains or losses produced by subtracting each measurement from the next down-
stream measurement, resulting in two gain/loss observations, q2-q1 and q3-q2. The errors in the 
two differences are not statistically independent because the error in q2 is included in both differ-
ences. Hill (1992) shows that in this circumstance the covariance between the two differences 
equals the negative of the variance of the q2 measurement. This covariance cannot be included in 
UCODE, which is restricted to a diagonal weight matrix that includes only the variances of the 
measurement errors. Christensen and others (in press) extended the results of Hill (1992, p. 43) to 
measurements along branching streams, and S. Christensen extended MODFLOWP to include full 
weight matrices. It was found, however, that inclusion of the off-diagonal covariance terms in the 
weight matrix had negligible effect on the regression or statistical analysis in the problem consid-
ered (S. Christensen, 1997, oral commun.). Ignoring the covariances as is required in UCODE, and 
as is often done in applications of MODFLOWP, is not expected to effect results substantially in 
many circumstances.
The methods presented above also can be used to determine weighting for prior informa-
tion, but there are two additional issues to consider. First, if the weighting is determined using the 
arguments presented above, the prior information fits into the framework of either classical or Bay-
sian statistics, the later being the framework from which the term prior information originates. 
Sometimes, however, larger weights (smaller statistics) are assigned to the prior information to 
achieve a stable regression, in which case the term regularization needs to be used instead of prior 
information (Hill and others, 1998; Backus, 1988). Setting parameter values to constants that are 
not changed by the regression can be thought of as an extreme case of regularization. When regu-
s
q
1
s
q
1
s
q
2
s
q
2
s
q
1
2
s
q
2
2
s
q
1
2
s
q
2
2


48
larization is used, confidence intervals on parameters and predictions may not represent model un-
certainty accurately. Thus, classifying what is called prior information throughout this work as 
either prior information or regularization is very important.
The second issue unique to prior information occurs when the associated parameter is log-
transformed. In this situation, the statistic on the prior information needs to relate to the log of the 
parameter value. The methods discussed above are directly applicable, but an extra step is needed 
because it is easier to establish a range of plausible values for native than for transformed values. 
Thus, if the prior estimate for a hydraulic conductivity is 100 m/d, and the true value is expected 
to fall within a range of 80 to 120 m/d with a certainty of about 95 percent, a 95-percent confidence 
interval for the native value has approximate limits of 80 and 120. Taking the log (base 10) of these 
values produces limits of 1.90 and 2.08, about a prior estimate of 2.0. If it is assumed that the un-
certainty in the hydraulic conductivity can be approximated by a log-normal distribution, the log-
transformed value is normally distributed. Changing the limits 1.90 and 2.08 slightly to form a 
symmetric interval with limits 1.91 and 2.09, the methods described above can be used to deter-
mine that the standard deviation relevant to the log-transformed parameter equals 0.045, and this 
value would need to be used as the statistic. 
It generally is impossible to identify all measurment errors that contribute to an observation 
or prior information value, and the variances, standard deviation, and coefficients of variation cal-
culated by using the methods discussed in this section are clearly approximate. Indeed, a problem 
related to Guideline 6 as described above is what should be included in the so-called "measurement 
errors". While this point can be argued extensively, a definition that has proven to be useful for the 
purpose of determining weighting is that measurement error is error related to any aspect of the 
measurement not accounted for by the model considered. Unambiguous types of measurement er-
rors are errors in the measuring device and the location of the measurement in three-dimensional 
space. Ambiguous contributions include, for example, heads measured in wells that only partially 
penetrate the numerical layer to which they are assigned. This is more ambiguous because the mod-
el could be refined to accommodate this, and it could be debated whether this is model error or mea-
surement error. Despite such ambiguities, the above definition for measurement error works 
relatively well in practice, partly because the regression often is not very sensitive to the weighting 
used, and the definition is sufficient to produce weighting based on common sense that is at least 
approximately correct.
A final useful aspect of defining the weighting as described here was discussed previously 
in the section 

Calculated Error Variance and Standard Error.

Stated briefly, if the model fit is con-
sistent with the assigned weighting, the calculated error variance and the standard error are close 
to 1.0. Larger values, which are common in practice, indicate that the model fits the data less well 
than would be accounted for by expected measurement error. Thus, if the standard error is 5.0, it 
can be said that the model fit was, on average, five times worse than was consistent with the pre-


49
liminary analysis of measurement error. Possible sources of the additional error are neglected mea-
surement error, which would change the weighting, or model error. Hill and others (1998) show 
that some types of model error contribute to the calculated error variance but do not necessarily 
result in an inaccurate model.

Download 0,49 Mb.

Do'stlaringiz bilan baham:
1   ...   27   28   29   30   31   32   33   34   ...   55




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish