Directorate of distance education



Download 3,65 Mb.
Pdf ko'rish
bet140/215
Sana19.04.2022
Hajmi3,65 Mb.
#563270
1   ...   136   137   138   139   140   141   142   143   ...   215
Bog'liq
Logistics & Supply Chain Management ( PDFDrive )

Classical Optimisation
The Derivative
To find a derivative of a function is to differentiate 
with respect to 
a
variable. Properties of derivatives we use in this 
supplement are:


Notes
219
Where a represents a constant and 
x, y
, and 
z
are variables.
Let’s find the first derivative of the function y = 3
x
2 + 

– 3 with 
respect to the variable 
x
:
In this example, the first derivative of each term is used to find 
the first derivative 
d(y)/dx.
The second derivative is found by taking the 
derivative of the first derivative:
Optimization 
In the calculus, the derivative is taken to find the value of the deci-
sion variable that gives the largest or smallest value of a criterion function. 
The general procedure is to take the first derivative of a function with re-
spect to a decision variable and set the result equal to zero. The equation 
is than solved for the decision variable in terms of the other parameters in 
the equation. To determine whether the optimal point is a maximum, the 
second derivative is taken. If the second derivative is positive, the optimal 
point is a minimum. If the second derivative is negative, the optimal point 
is a maximum. If the second derivative is zero, the point is an inflection 
point.
In the previous example,
The optimal value of 
x
is found by setting this equation equal to 
zero and solving for 
x
:
0 = 6x + 1
x = - (1/6)
When the second derivative was found, it was +6. Therefore
x
= -1/6 is a minimum point.


Notes
220

Download 3,65 Mb.

Do'stlaringiz bilan baham:
1   ...   136   137   138   139   140   141   142   143   ...   215




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish