The revolution in nanotechnology, however, will ultimately enable us to redesign and rebuild, molecule by
molecule, our bodies and brains and the world with which we interact.
70
These two revolutions are overlapping, but the
full realization of nanotechnology lags behind the biotechnology revolution by about one decade.
Most nanotechnology historians date the conceptual birth of nanotechnology to physicist Richard Feynman's
seminal speech in 1959, "There's Plenty of Room at the Bottom," in which he described the inevitability and profound
implications of engineering machines at the level of atoms:
The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom
by atom. It would be, in principle, possible ... for a physicist to synthesize any chemical substance that the
chemist writes down. . . . How? Put the atoms down where the chemist says, and so you make the substance.
The problems of chemistry and biology can be greatly helped if our ability to see what we are doing, and to
do things on an atomic level, is ultimately developed—a development which I think cannot be avoided.
71
An even earlier conceptual foundation for nanotechnology was formulated by the information theorist John von
Neumann in the early 1950s with his model of a self-replicating system based on a universal constructor, combined
with a universal computer.
72
In this proposal the computer runs a program that directs the constructor, which in turn
constructs a copy of both the computer (including its self-replication program) and the constructor. At this level of
description von Neumann's proposal is quite abstract—the computer and constructor could be made in a great variety
of ways, as well as from diverse materials, and could even be a theoretical mathematical construction. But he took the
concept one step further and proposed a "kinematic constructor": a robot with at least one manipulator (arm) that
would build a replica of itself from a "sea of parts" in its midst.
73
It was left to Eric Drexler to found the modern field of nanotechnology, with a draft of his landmark Ph.D. thesis
in the mid-1980s, in which he essentially combined these two intriguing suggestions. Drexler described a von
Neumann kinematic constructor, which for its sea of parts used atoms and molecular fragments, as suggested in
Feynman's speech. Drexler's vision cut across many disciplinary boundaries and was so far-reaching that no one was
daring enough to be his thesis adviser except for my own mentor, Marvin Minsky. Drexler's dissertation (which
became his book
Do'stlaringiz bilan baham: