Electric Motors and Drives This Page Intentionally Left Blank



Download 5,24 Mb.
Pdf ko'rish
bet78/97
Sana13.04.2022
Hajmi5,24 Mb.
#548362
1   ...   74   75   76   77   78   79   80   81   ...   97
Bog'liq
Electric Motors Drives

Slewing region
Pull-out curve
J

=
 0
J

= J
M
J

= 3J
M
Pull-in
Figure 9.18
Typical pull-in and pull-out curves showing e
V
ect of load inertia on the
pull-in torque
. (J
¼
motor inertia; J
¼
load inertia)
336
Electric Motors and Drives


Optimum acceleration and closed-loop control
There are some applications where the maximum possible accelerations
and decelerations are demanded, in order to minimise point-to-point
times. If the load parameters are stable and well de
W
ned, an open-
loop approach is feasible, and this is discussed
W
rst. Where the load is
unpredictable, however, a closed-loop strategy is essential, and this
is dealt with later.
To achieve maximum possible acceleration calls for every step com-
mand pulse to be delivered at precisely optimised intervals during the
acceleration period. For maximum torque, each phase must be on
whenever it can produce positive torque, and o
V
when its torque
would be negative. Since the torque depends on the rotor position, the
optimum switching times have to be calculated from a full dynamic
analysis. This can usually be accomplished by making use of the static
torque–angle curves (provided appropriate allowance is made for the
rise and fall times of the stator currents), together with the torque–speed
characteristic and inertia of the load. A series of computations is re-
quired to predict the rotor angle–time relationship, from which the
switchover points from one phase to the other are deduced. The train
of accelerating pulses is then pre-programmed into the controller,
for subsequent feeding to the drive in an open-loop fashion. It is obvious
that this approach is only practicable if the load parameters do not
vary, since any change will invalidate the computed optimum stepping
intervals.
When the load is unpredictable, a much more satisfactory arrange-
ment is obtained by employing a closed-loop scheme, using position
feedback from a shaft-mounted encoder. The feedback signals indicate
the instantaneous position of the rotor, and are used to ensure that the
phase-windings are switched at precisely the right rotor position for
maximising the developed torque. Motion is initiated by a single com-
mand pulse, and subsequent step command pulses are e
V
ectively self-
generated by the encoder. The motor continues to accelerate until its
load torque equals the load torque, and then runs at this (maximum)
speed until the deceleration sequence is initiated. During all this time,
the step counter continues to record the number of steps taken.
Closed-loop operation ensures that the optimum acceleration is
achieved, but at the expense of more complex control circuitry, and
the need to
W
t a shaft encoder. Relatively cheap encoders are, however,
now available for direct
W
tting to some ranges of motors, and single chip
microcontrollers are available which provide all the necessary facilities
for closed-loop control.
Stepping Motors
337


An appealing approach aimed at eliminating an encoder is to detect the
position of the rotor by online analysis of the signals (principally the rates
of change of currents) in the motor windings themselves: in other words,
to use the motor as its own encoder. A variety of approaches have been
tried, including the addition of high-frequency alternating voltages super-
imposed on the excited phase, so that as the rotor moves the variation of
inductance results in a modulation of the alternating current component.
Some success has been achieved with particular motors, but the approach
has not yet achieved widespread commercial exploitation.
To return
W
nally to encoders, we should note that they are also used in
open-loop schemes when an absolute check on the number of steps
taken is required. In this context the encoder simply provides a tally of
the total steps taken, and normally plays no part in the generation of the
step pulses. At some stage, however, the actual number of steps taken
will be compared with the number of step command pulses issued by
the controller. When a disparity is detected, indicating a loss (or gain
of steps), the appropriate additional forward or backward pulses can
be added.
REVIEW QUESTIONS
1)
Why are the step positions likely to be less well de
W
ned when a motor
is operated in ‘two-phase-on’ mode as compared with one-phase-on
mode?
2)
What is meant by detent torque, and in what type of motors does
detent torque occur?
3)
What is meant by the ‘holding torque’ of a stepping motor?
4)
The static torque curve of a 3-phase VR stepper is approximately
sinusoidal, the peak torque at rated current being 0.8 Nm. Find
the step position error when a steady load torque of 0.25 Nm is
present.
5)
For the motor in question 4, estimate the low-speed pull-out torque
when the motor is driven by a constant-current drive.
6)
The static torque curve of a particular 1.8
8
hybrid step motor can be
approximated by a straight line with a slope of 2 Nm per degree, and
the total inertia (motor plus load) is 1
:
8
10
3
kg
=
m
2
. Estimate the
frequency of oscillation of the rotor following a single step.
338
Electric Motors and Drives


7)
Find the step angle of the following stepping motors: (a) 3-
phase, VR, 12 stator teeth and 8 rotor teeth; (b) 3-phase, VR,
three-stack, 16 rotor teeth; (c) 4-phase unipolar, hybrid, 50 rotor
teeth.
8)
What simple tests could be done on an unmarked stepping motor
to decide whether it was a VR motor or a hybrid motor?
9)
At what speed would a 1.8
8
hybrid steeping motor run if its two
phases were each supplied from the 60 Hz mains supply, the
current in one of the phases being phase shifted by 90
8
with respect
to the other?
10)
The rated current of a 4-phase unipolar stepping motor is 3 A per
phase and its winding resistance is 1
:
5
V
. When supplied from a
simple constant-voltage drive without additional forcing resistance
the pull-out torque at a speed of 50 steps per second is 0.9 Nm.
Estimate the voltage and forcing resistance that will allow the same
pull-out torque to be achieved at a speed of 250 steps per second.
11)
An experimental scientist read that stepping motors typically com-
plete each single step in a few milliseconds. He decided to use one
for a display aid, so he mounted a size 18 (approximately 4 cm
diameter) 15
8
per step VR motor so that its shaft was vertical, and
W
xed a lightweight (30 cm) aluminium pointer about 40 cm
long onto the shaft. When he operated the motor he was very
disappointed to discover that after every step the pointer oscillated
wildly and took almost 2 s before coming to rest. Why should he
not have been surprised?
Stepping Motors
339


10
SYNCHRONOUS, BRUSHLESS D.C. AND
SWITCHED RELUCTANCE DRIVES
INTRODUCTION
In this chapter the common feature which links the motors is that they
are all a.c. motors in which the electrical power that is converted to
mechanical power is fed into the stator, so, as with the induction motor,
there are no sliding contacts in the main power circuits. All except the
switched reluctance motor also have stators that are identical (or very
similar) to the induction motor.
We begin by looking at motors that are intended to be operated dir-
ectly o
V
the mains supply, usually at either 50 or 60 Hz. These motors
are known as ‘synchronous’ or ‘reluctance’ motors, and they provide a
precise, speci
W
c and constant speed for a wide range of loads, and are
therefore used in preference to induction motors when constant speed
operation is essential. Such machines are available over a very wide range
from tiny single-phase versions in domestic timers to multi-megawatt
machines in large industrial applications such as gas compressors. Their
principal disadvantage is that if the load torque becomes too high, the
motor will suddenly lose synchronism and stall.
To overcome the
W
xed-speed limitation that results from the constant
frequency of the mains, controlled-speed synchronous motor drives sim-
ply use a variable-frequency inverter to provide for variation of the
synchronous speed. These ‘open-loop’ drives are dealt with next.
We then look at what are perhaps best referred to as ‘self-synchronous’
drives, which potentially o
V
er competition for d.c. and induction
motor drives. In these drives the motor is basically a synchronous motor
with the stator fed from a variable-frequency inverter; but the frequency is
determined by a speed signal from a transducer mounted on the rotor.


This closed-loop arrangement ensures that the motor can never lose
synchronism, hence the name ‘self-synchronous’. Amongst this category
is the so-called ‘brushless d.c.’ drive, where the motor is speci
W
cally
designed to operate from its own converter, and cannot be supplied
directly from conventional mains supplies.
Finally, the most recent addition to the family of industrial drives –
the switched reluctance drive – is brie
X
y discussed. The switched reluc-
tance motor is perhaps the simplest of all electrical machines, but it was
only with the advent of power-electronic switching and sophisticated
digital control that its potential could be fully demonstrated.
SYNCHRONOUS MOTORS
In Chapter 5 we saw that the 3-phase stator windings of an induction
motor produce a sinusoidal rotating magnetic
W
eld in the air-gap. The
speed of rotation of the
W
eld (the synchronous speed) was shown to
be directly proportional to the supply frequency, and inversely pro-
portional to the pole number of the winding. We also saw that in the
induction motor the rotor is dragged along by the
W
eld, but that the
higher the load on the shaft, the more the rotor has to slip with res-
pect to the
W
eld in order to induce the rotor currents required to produce
the torque. Thus although at no-load the speed of the rotor can be
close to the synchronous speed, it must always be less; and as the load
increases, the speed has to fall.
In the synchronous motor, the stator windings are exactly the same as
in the induction motor, so when connected to the 3-phase supply,
a rotating magnetic
W
eld is produced. But instead of having a cylin-
drical rotor with a cage winding, the synchronous motor has a rotor
with either a d.c. excited winding (supplied via sliprings), or permanent
magnets, designed to cause the rotor to ‘lock-on’ or ‘synchronise with’
the rotating magnetic
W
eld produced by the stator. Once the rotor is
synchronised, it will run at exactly the same speed as the rotating
W
eld
despite load variation, so under constant-frequency operation the speed
will remain constant as long as the supply frequency is stable.
As previously shown, the synchronous speed (in rev/min) is given by
the expression
N
s
¼
120
f
p
(10
:
1)
where
f
is the supply frequency and
p
is the pole number of the winding.
Hence for two-, four- and six-pole industrial motors the running speeds
Synchronous, Brushless D.C. and Switched Reluctance Drives
341


on a 50 Hz supply are 3000, 1500 and 1000 rev/min, while on a 60 Hz
supply they become 3600, 1800 and 1200 rev/min, respectively. At the
other extreme, the little motor in a central heating timer with its cup-
shaped rotor with 20 axially projecting
W
ngers and a circular coil in
the middle is a 20-pole reluctance synchronous motor that will run at
300 rev/min when fed from 50 Hz mains. Users who want speeds di
V
er-
ent from these will be disappointed, unless they are prepared to invest in
a variable-frequency inverter.
We discussed a similar mechanism whereby the rotor locked onto a
magnetic
W
eld in connection with the stepping motor (see Chapter 9),
but there the
W
eld proceeds in a stepwise fashion, rather than smoothly.
With the synchronous machine we again
W
nd that, as with the stepper,
there is a limit to the maximum (pull-out) torque which can be devel-
oped before the rotor is forced out of synchronism with the rotating
W
eld. This ‘pull-out’ torque will typically be 1.5 times the continuous
rated torque, but for all torques below pull-out the steady running speed
will be absolutely constant. The torque–speed curve is therefore simply a
vertical line at the synchronous speed, as shown in Figure 10.1. We can
see from Figure 10.1 that the vertical line extends into quadrant 2, which
indicates that if we try to force the speed above the synchronous speed
the machine will act as a generator.
The mains-fed synchronous motor is clearly ideal where a constant
speed is essential, and also where several motors must run at precisely the
same speed. Examples where 3-phase motors are used include arti
W
cial
W
bre spinning lines, and
W
lm and tape transports. Small single-
phase reluctance versions are used in clocks and timers for washing
Torque
Speed

Download 5,24 Mb.

Do'stlaringiz bilan baham:
1   ...   74   75   76   77   78   79   80   81   ...   97




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish