Introduction to Algorithms, Third Edition



Download 4,84 Mb.
Pdf ko'rish
bet477/618
Sana07.04.2022
Hajmi4,84 Mb.
#534272
1   ...   473   474   475   476   477   478   479   480   ...   618
Bog'liq
Introduction-to-algorithms-3rd-edition

Figure 26.7
(a)
A flow network for which F
ORD
-F
ULKERSON
can take
‚.E
j
f
j
/
time,
where
f
is a maximum flow, shown here with
j
f
j D
2,000,000. The shaded path is an aug-
menting path with residual capacity
1
.
(b)
The resulting residual network, with another augmenting
path whose residual capacity is
1
.
(c)
The resulting residual network.
Proof
We will suppose that for some vertex
2
V
f
s; t
g
, there is a flow aug-
mentation that causes the shortest-path distance from
s
to
to decrease, and then
we will derive a contradiction. Let
f
be the flow just before the first augmentation
that decreases some shortest-path distance, and let
f
0
be the flow just afterward.
Let
be the vertex with the minimum
ı
f
0
.s; /
whose distance was decreased by
the augmentation, so that
ı
f
0
.s; / < ı
f
.s; /
. Let
p
D
s
;
u
!
be a shortest
path from
s
to
in
G
f
0
, so that
.u; /
2
E
f
0
and
ı
f
0
.s; u/
D
ı
f
0
.s; /
1 :
(26.12)
Because of how we chose
, we know that the distance of vertex
u
from the source
s
did not decrease, i.e.,
ı
f
0
.s; u/
ı
f
.s; u/ :
(26.13)
We claim that
.u; /
62
E
f
. Why? If we had
.u; /
2
E
f
, then we would also have
ı
f
.s; /
ı
f
.s; u/
C
1
(by Lemma 24.10, the triangle inequality)
ı
f
0
.s; u/
C
1
(by inequality (26.13))
D
ı
f
0
.s; /
(by equation (26.12)) ,
which contradicts our assumption that
ı
f
0
.s; / < ı
f
.s; /
.
How can we have
.u; /
62
E
f
and
.u; /
2
E
f
0
? The augmentation must
have increased the flow from
to
u
. The Edmonds-Karp algorithm always aug-
ments flow along shortest paths, and therefore the shortest path from
s
to
u
in
G
f
has
.; u/
as its last edge. Therefore,
ı
f
.s; /
D
ı
f
.s; u/
1
ı
f
0
.s; u/
1
(by inequality (26.13))
D
ı
f
0
.s; /
2
(by equation (26.12)) ,


26.2
The Ford-Fulkerson method
729
which contradicts our assumption that
ı
f
0
.s; / < ı
f
.s; /
. We conclude that our
assumption that such a vertex
exists is incorrect.
The next theorem bounds the number of iterations of the Edmonds-Karp algo-
rithm.
Theorem 26.8
If the Edmonds-Karp algorithm is run on a flow network
G
D
.V; E/
with source
s
and sink
t
, then the total number of flow augmentations performed by the algorithm
is
O.VE/
.

Download 4,84 Mb.

Do'stlaringiz bilan baham:
1   ...   473   474   475   476   477   478   479   480   ...   618




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish