National open university of nigeria introduction to econometrics I eco 355



Download 1,58 Mb.
Pdf ko'rish
bet37/103
Sana28.02.2022
Hajmi1,58 Mb.
#475577
1   ...   33   34   35   36   37   38   39   40   ...   103
Bog'liq
ECO 355 0

3.0 
MAIN CONTENT 
 
3.1 
The method of Ordinary Least Squares (OLS) 


49 
The method of ordinary least squares is attributed to Carl Friedrich Gausss, a German 
mathematician. Under certain assumptions, the method of least square has some very 
attractive statistical properties that have made it one of the most powerful and popular 
methods of regression analysis. To understand, we first explain the least square principle. 
Recall the two variable model. 
Where
is called the dependent variable while 
are called independent 
or explanatory variables. 
The equation is not directly observable. However, we can gather data and obtain 
estimates of 
and
from a sample of the population. This gives us the following 
relationship, which is a fitted straight linw with intercept
̂
and 
̂

̂
̂
Equation (II) can be referred to as the sample regression equation. Here 
̂
and 
̂
are 
sample estimates of the population parameters 
and 
, and
̂
denotes the predicted 
value of 
. Once we have the estimated sample regression equation we can easily predict 
for various values of

When we fit a sample regression line to a scatter of points, it is obviously desirable to 
select the line in such a manner that it is as close as possible to the actual Y, or, in other 
words, that it provides the smallest possible number of residuals. To do this we adopt the 
following criterion: choose the sample regression function in such a way that the sum of 
the squared residuals is as small as possible (that is minimized).
 
3.2. Properties of OLS 
This method of estimation has some desirable properties that make it the most popular 
technique in uncomplicated applications of regression analysis, namely: 
1.
By using the squared residuals we eliminate the effect of the sign of the residuals, 
so it is not possible that a positive and negative residual will offset each other.
For example, we could minimize the sum of the residuals by setting the forecast 
for 
(
̂
). But this would not be a very well-fitting line at all. So clearly we want a 
transformation that gives all the residuals the same sign before making them as 
small as possible. 
2.
By squaring the residuals, we give more weight to the larger residuals and so, in 
effect, we work harder to reduce the very large errors. 
3.
The OLS method chooses 
̂
and 
̂
estimates that have certain numerical and 
statistical properties (such as unbiasedness and efficiency). Let us see how to 
derive the OLS estimators. Denoting by RSS the Residual Sum of square. 


50 
̂
̂
∑ ̂
 
However, we know that: 
̂

̂ ̂ 
)
and therefore: 
∑ ̂

̂
)

̂ ̂ 
)
To minimum equation (V), the first order condition is to take the partial derivatives of 
Rss with respect to 
̂
and 
̂
and set them to zero. 
Thus, we have: 
̂

̂ ̂ 
and 
̂

̂ ̂ 
The second – order partial derivatives are: 
̂
̂

̂

Therefore it is easy to verify that the second-order conditions for a minimum are met.
Since 
∑ ̂ ̂
for simplicity on notation we omit the upper and lower limits of the summation 
symbol), we can (by using that and rearranging) rewrite equation (6) and (7) as follows: 

̂
̂ ∑

̂ ∑
̂ ∑
The only unknowns in these two equations are 
̂
and 
̂
. Therefore, we can solve this 
system of two equations with two unknown to obtain 
̂
and 
̂
. First, we divide both sides 
of equation (11) by n to get; 

̂
̂ ∑
Denoting 

̂
and

̂
and rearranging,


51 
we obtain: 
̂ ̅ ̂ ̅
Substituting equation (14) into equation (12), we get:

̅ ∑
̂ ̅ ∑
̂ ∑
or 
̂
̂
And finally, factorizing the 
̂
terms, we have: 

̂ *
+
and finally, factorizing the 
̂
as: 
̂
and given 
̂
we can use equation (14) to obtain
̂


Download 1,58 Mb.

Do'stlaringiz bilan baham:
1   ...   33   34   35   36   37   38   39   40   ...   103




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish