Sum of one prime and two squares of primes in short intervals



Download 309,71 Kb.
Pdf ko'rish
bet3/3
Sana08.02.2022
Hajmi309,71 Kb.
#437972
1   2   3
Bog'liq
Jnt2015


partial
integration
we
obtain
A
(
α
) =
1
2
π
(4

w
)
u
4

w
u
2

N

2
+ 2
u
5

w
(
u
2

N

2
)
2
d
u
and
B
(
α
) =
1
4

w
u
4

w
(
u
2

N

2
)
3
/
2
+ 3
u
5

w
(
u
2

N

2
)
5
/
2
d
u
.
Hence
by
 
(12)
we
have
for
α

[
η/
2
,
4
η
] that
A
(
α
)


u
2

1
/
1 +
|
γ
1

γ
2
|

α
2

1
/
1 +
|
γ
1

γ
2
|
and
B
(
α
)


α
1

1
/
1 +
|
γ
1

γ
2
|
,
(15)
where
A
(
α
) and
B
(
α
) satisfy
A
(
η/
4)
=
B
(
η/
4)
= 0,
and
from
 
(14)–(15)
we
obtain
G
1
(
α
)


α
2

1
/
1 +
|
γ
1

γ
2
|
2
(16)
for
α

[
η/
2
,
4
η
].
From
 
(11)
and
 
(16)
we
get
J


η
1

1
/
1 + (
γ
1
+
γ
2
N η
)
2
1 +
|
γ
1

γ
2
|
2
exp

c
γ
1
+
γ
2
N η
,
hence
from
 
(9)
and
Stirling’s
formula
we
have
2
η
η
γ>
0
z

ρ/
Γ
ρ

2
d
α


η
1

1
/
γ
1
>
0
γ
2
>
0
|
γ
1
|
(1


)
/
(2

)
|
γ
2
|
(1


)
/
(2

)
1 + (
γ
1
+
γ
2
N η
)
2
1 +
|
γ
1

γ
2
|
2
exp

c
γ
1
+
γ
2
N η
.
(17)


52
A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
But
sorting
imaginary
parts
it
is
clear
that
|
γ
1
|
(1


)
/
(2

)
|
γ
2
|
(1


)
/
(2

)
1 +
γ
1
+
γ
2
N η
2
exp

c
γ
1
+
γ
2
N η


|
γ
1
|
(1


)
/
exp

c
2
γ
1
N η
,
hence
 
(17)
becomes


η
1

1
/
γ
1
>
0
|
γ
1
|
(1


)
/
exp

c
2
γ
1
N η
γ
2
>
0
1
1 +
|
γ
1

γ
2
|
2


N
1
/
ηL
2
,
(18)
since
the
number
of
zeros
ρ
2
= 1
/
2
+

2
with
n
≤ |
γ
1

γ
2
|

n
+ 1 is
O
(log(
n
+
|
γ
1
|
)).
From
 
(6)–(8)
and
 
(18)
we
get
ξ

ξ
γ>
0
z

ρ/
Γ
ρ

2
d
α


N
1
/
ξL
2
,
(19)
and
 
Lemma 3
follows
from
 
(19)
.
2
We
will
also
need
the
following
result
based
on
the
Laplace
formula
for
the
Gamma
function,
see
 
[10]
.
In
fact
we
will
need
it
just
for
μ
= 2 but,
as
before,
we
write
the
more
general
case.
Lemma
4.
Let
N
be
a
positive
integer,
z
= 1
/N

2
πiα
,
and
μ
>
0
.
Then
1
/
2

1
/
2
z

μ
e
(


) d
α
=
e

n/N
n
μ

1
Γ(
μ
)
+
O
μ
1
n
,
uniformly
for
n

1
.
Proof.
We
start
with
the
identity
1
2
π
R
e
iDu
(
a
+
iu
)
s
d
u
=
D
s

1
e

aD
Γ(
s
)
,
which
is
valid
for
σ
=

(
s
)
>
0 and
a

C
with

(
a
)
>
0 and
D >
0.
Letting
u
=

2
πα
and
taking
s
=
μ
,
D
=
n
and
a
=
N

1
we
find
R
e
(


)
(
N

1

2
πiα
)
μ
d
α
=
R
z

μ
e
(


) d
α
=
n
μ

1
e

n/N
Γ(
μ
)
.


A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
53
For
0
< X < Y
let
I
(
X, Y
) =
Y
X
e
iDu
(
a
+
iu
)
μ
d
u.
An
integration
by
parts
yields
I
(
X, Y
) =
1
iD
e
iDu
(
a
+
iu
)
μ
Y
X
+
μ
D
Y
X
e
iDu
(
a
+
iu
)
μ
+1
d
u.
Since
a
>
0,
the
first
summand
is

μ
D

1
X

μ
,
uniformly.
The
second
summand
is

μ
D
Y
X
d
u
u
μ
+1

μ
D

1
X

μ
.
The
result
follows.
2
We
remark
that
if
μ

N
,
μ

2,
 
Lemma 4
can
be
proved
in
an
easier
way
using
the
Residue
Theorem
(see,
e.g.
,
Languasco
 
[4]
or
Languasco
and
Zaccagnini
 
[6]
).
In
the
following
we
will
also
need
a
fourth-power
average
of
S
2
(
α
).
Lemma
5.
We
have
1
/
2

1
/
2
|
S
2
(
α
)
|
4
d
α

N L
2
.
Proof.
Let
P
2
=
{
p
j
:
j

2
,
p
prime
}
and
r
0
(
m
) be
the
number
of
representations
of
m
as
a
sum
of
two
squares.
We
have
1
/
2

1
/
2
|
S
2
(
α
)
|
4
d
α
=
n
1
,n
2
,n
3
,n
4

2
Λ(
n
1
)Λ(
n
2
)Λ(
n
3
)Λ(
n
4
)
e

(
n
2
1
+
n
2
2
+
n
2
3
+
n
2
4
)
/N
1
/
2

1
/
2
e
((
n
2
1
+
n
2
2

n
2
3

n
2
4
)
α
) d
α

p
1
,p
2

2
log
p
1
log
p
2
e

2(
p
2
1
+
p
2
2
)
/N
p
3
,p
4

2
p
2
1
+
p
2
2
=
p
2
3
+
p
2
4
log
p
3
log
p
4
+
n
1
,n
2

2
n
1
∈P
2
Λ(
n
1
)Λ(
n
2
)
e

2(
n
2
1
+
n
2
2
)
/N
n
3
,n
4

2
n
2
1
+
n
2
2
=
n
2
3
+
n
2
4
Λ(
n
3
)Λ(
n
4
)
= Σ
1
+ Σ
2
,
(20)


54
A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
say.
In
Σ
1
we
separately
consider
the
contribution
of
the
cases
p
1
p
2
=
p
3
p
4
and
p
1
p
2

=
p
3
p
4
;
hence
Σ
1

S
1
+
S
2
where,
by
partial
summation
and
the
Prime
Number
Theorem,
we
have
S
1
= 2
p

2
(log
p
)
2
e

2
p
2
/N
2

1 +
+

2
u
2
N
(log
u
)
e

2
u
2
/N
d
u
2

N L
2
,
and,
by
a
dissection
argument
and
Satz
3
on
p. 94
of
Rieger
 
[16]
,
we
also
obtain
S
2

y

1
1

x

y
y
2
x
2
e

2
2
y
+1
/N
e

2
2
x
+1
/N
2
y

p
1
<
2
y
+1
2
x

p
2
<
2
x
+1
p
3
,p
4

2
p
2
1
+
p
2
2
=
p
2
3
+
p
2
4
p
1
p
2
 
=
p
3
p
4
1

y

1
y
4
e

2
2
y
+1
/N
p
1
,p
2
<
2
y
+1
p
3
,p
4

2
p
2
1
+
p
2
2
=
p
2
3
+
p
2
4
p
1
p
2
 
=
p
3
p
4
1
1

x

y
e

2
2
x
+1
/N

y

1
y
2
y
e

2
2
y
+1
/N
y
1
e

2
t
/N
d
t

y

1
y
2
2
y
e

2
2
y
+1
/N

+

2
(log
u
)
2
e

u/N
d
u

N L
2
.
Summing
up
Σ
1

N L
2
.
(21)
Recalling
that
r
0
(
m
)

m
ε
,
it
is
also
easy
to
see
that
Σ
2

n
1
,n
2

2
n
1
∈P
2
Λ(
n
1
)Λ(
n
2
)(log(
n
2
1
+
n
2
2
))
2
r
0
(
n
2
1
+
n
2
2
)
e

2(
n
2
1
+
n
2
2
)
/N

n
1
,n
2

2
n
1
∈P
2
n
ε
1
n
ε
2
e

2(
n
2
1
+
n
2
2
)
/N

j

2
p

2
p

e

2
p
2
j
/N
n

2
n
ε
e

2
n
2
/N

j

2
e

2
2
j
/N
+

2
t

e

t
2
j
/N
d
t
N
1
/
2+
ε
+

0
u
ε

1
/
2
e

u
d
u

N
1
/
2+2
ε
j

2
N
1
/
(2
j
)
e

2
2
j
/N

N
1
/
2+2
ε
N
1
/
4
log
N
+
j>
(1
/
2) log
N
e

2
2
j
/N

N
3
/
4+3
ε
.
(22)
Combining
 
(20)–(22)
,
 
Lemma 5
follows.
2


A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
55
3.
Proof
of
 
Theorem 1
Let
H

2,
H
=
o
(
N
) be
an
integer.
We
recall
that
we
set
L
= log
N
for
brevity.
Recalling
 
(1)
and
letting
R
(
n
) =
a
+
b
2
+
c
2
=
n
Λ(
a
)Λ(
b
)Λ(
c
)
,
we
have
(see,
e.g.
,
p. 14
of
 
[20]
)
that
r
(
n
) =
R
(
n
) +
O
n
3
/
4
(log
n
)
3
.
(23)
Then,
for
every
n

2
N
,
we
can
write
r
(
n
) =
R
(
n
) +
O
n
3
/
4
(log
n
)
3
=
e
n/N
1
/
2

1
/
2
S
1
(
α
)
S
2
(
α
)
2
e
(


) d
α
+
O
n
3
/
4
(log
n
)
3
.
From
this
equation,
the
Cauchy–Schwarz
inequality,
Lemma 5
and
the
Prime
Number
Theorem,
for
every
n

2
N
we
also
have
r
(
n
)

1
/
2

1
/
2
|
S
1
(
α
)
||
S
2
(
α
)
|
2
d
α
+
N
3
/
4
L
3

1
/
2

1
/
2
|
S
1
(
α
)
|
2
d
α
1
/
2
1
/
2

1
/
2
|
S
2
(
α
)
|
4
d
α
1
/
2
+
N
3
/
4
L
3

N L
3
/
2
.
(24)
We
need
now
to
choose
a
suitable
weighted
average
of
r
(
n
).
We
further
set
U
(
α, H
) =
H
m
=1
e
(

)
and,
moreover,
we
also
have
the
usual
numerically
explicit
inequality
|
U
(
α, H
)
| ≤
min
H
;
1
|
α
|
.
(25)
With
these
definitions
and
 
(23)
,
we
may
write
S
(
N, H
) :=
N
+
H
n
=
N
+1
e

n/N
r
(
n
) =
1
/
2

1
/
2
S
1
(
α
)
S
2
(
α
)
2
U
(

α, H
)
e
(

N α
) d
α
+
O
HN
3
/
4
L
3
.


56
A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
Using
 
Lemma 2
with

= 1
,
2 and
recalling
that
Γ(1)
= 1,
Γ(1
/
2)
=
π
1
/
2
,
we
can
write
S
(
N, H
) =
1
/
2

1
/
2
π
4
z
2
U
(

α, H
)
e
(

N α
) d
α
+
1
/
2

1
/
2
1
z
S
2
(
α
)
2

π
4
z
U
(

α, H
)
e
(

N α
) d
α
+
1
/
2

1
/
2
S
1
(
α
)

1
z
S
2
(
α
)
2
U
(

α, H
)
e
(

N α
) d
α
+
O
HN
3
/
4
L
3
=
I
1
+
I
2
+
I
3
+
O
HN
3
/
4
L
3
,
(26)
say.
From
now
on,
we
denote
E

(
α
) :=
S

(
α
)

Γ(1
/
)
z
1
/
.
Using
 
Lemma 4
we
immediately
get
I
1
=
π
4
N
+
H
n
=
N
+1
ne

n/N
+
O
H
N
=
πHN
4
e
+
O
H
2
.
(27)
Now
we
estimate
I
2
.
Using
the
identity
f
2

g
2
= 2
f
(
f

g
)

(
f

g
)
2
we
obtain
I
2

1
/
2

1
/
2
|
E
2
(
α
)
|
|
U
(
α, H
)
|
|
z
|
3
/
2
d
α
+
1
/
2

1
/
2
|
E
2
(
α
)
|
2
|
U
(
α, H
)
|
|
z
|
d
α
=
J
1
+
J
2
,
(28)
say.
Using
 
(3)
,
 
(25)
,
 
Lemma 3
and
a
partial
integration
argument
we
obtain
J
2

HN
1
/N

1
/N
|
E
2
(
α
)
|
2
d
α
+
H
1
/H
1
/N
|
E
2
(
α
)
|
2
d
α
α
+
1
/
2
1
/H
|
E
2
(
α
)
|
2
d
α
α
2

HN
1
/
2
L
2
+
HN
1
/
2
L
2
1 +
1
/H
1
/N
d
ξ
ξ
+
N
1
/
2
L
2
H
+
1
/
2
1
/H
d
ξ
ξ
2

HN
1
/
2
L
3
.
(29)
Using
the
Cauchy–Schwarz
inequality
and
arguing
as
for
J
2
we
get
J
1

HN
3
/
2
1
/N

1
/N
d
α
1
/
2
1
/N

1
/N
|
E
2
(
α
)
|
2
d
α
1
/
2
+
H
1
/H
1
/N
d
α
α
2
1
/
2
1
/H
1
/N
|
E
2
(
α
)
|
2
d
α
α
1
/
2
+
1
/
2
1
/H
d
α
α
4
1
/
2
1
/
2
1
/H
|
E
2
(
α
)
|
2
d
α
α
1
/
2


A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
57

HN
3
/
4
L
+
HN
3
/
4
L
1 +
1
/H
1
/N
d
ξ
ξ
1
/
2
+
H
3
/
2
N
1
/
4
L
1 +
1
/
2
1
/H
d
ξ
ξ
1
/
2

HN
3
/
4
L
3
/
2
+
H
3
/
2
N
1
/
4
L
3
/
2

HN
3
/
4
L
3
/
2
.
(30)
Combining
 
(28)–(30)
we
finally
obtain
I
2

HN
3
/
4
L
3
/
2
.
(31)
Now
we
estimate
I
3
.
By
the
Cauchy–Schwarz
inequality,
 
(25)
and
 
Lemma 5
we
obtain
I
3

1
/
2

1
/
2
|
S
2
(
α
)
|
4
d
α
1
/
2
1
/
2

1
/
2
|
E
1
(
α
)
|
2
|
U
(
α, H
)
|
2
d
α
1
/
2

N
1
/
2
L
H
2
1
/H

1
/H
|
E
1
(
α
)
|
2
d
α
+
1
/
2
1
/H
|
E
1
(
α
)
|
2
d
α
α
2
1
/
2

H
1
/
2
N L
2
,
(32)
where
in
the
last
step
we
used
 
Lemma 3
and
a
partial
integration
argument.
By
 
(26)–(27)
,
 
(31)
and
 
(32)
,
we
can
finally
write
S
(
N, H
) =
π
4
e
HN
+
O
H
1
/
2
N L
2
+
HN
3
/
4
L
3
+
H
2
.
Theorem 1
follows
since
the
exponential
weight
e

n/N
=
e

1
+
O
(
H/N
) for
n

[
N
+ 1
,
N
+
H
] and
hence
by
(24)
it
can
be
removed
at
the
cost
of
inserting
an
extra
factor
O
H
2
L
3
/
2
in
the
error
term.
The
corollary
about
the
existence
in
short
intervals
follows
by
remarking
that
S
(
N,
H
)
>
0 if
L
4

H
=
o
N L

3
/
2
.
2
Acknowledgments
This
research
was
partially
supported
by
the
grant
PRIN2010-11
Arithmetic
Algebraic
Geometry
and
Number
Theory
.
We
wish
to
thank
the
referee
for
pointing
out
some
inaccuracies.
References
[1]
G.H.
 
Hardy,
 
J.E.
 
Littlewood,
 
Some
 
problems
 
of
 
‘Partitio
 
numerorum’;
 
III:
 
On
 
the
 
expression
 
of
 
a
number
 
as
 
a
 
sum
 
of
 
primes,
 
Acta
 
Math.
 
44
 
(1923)
 
1–70.
[2]
G.
 
Harman,
 
A.
 
Kumchev,
 
On
 
sums
 
of
 
squares
 
of
 
primes
 
II,
 
J.
 
Number
 
Theory
 
130
 
(2010)
 
1969–2002.
[3]
L.K.
 
Hua,
 
Some
 
results
 
in
 
the
 
additive
 
prime
 
number
 
theory,
 
Q.
 
J.
 
Math.
 
9
 
(1938)
 
68–80.
[4]
A.
 
Languasco,
 
Some
 
refinements
 
of
 
error
 
terms
 
estimates
 
for
 
certain
 
additive
 
problems
 
with
 
primes,
 
J.
 
Number
 
Theory
 
81
 
(2000)
 
149–161.


58
A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
[5]
A.
 
Languasco,
 
A.
 
Perelli,
 
On
 
Linnik’s
 
theorem
 
on
 
Goldbach
 
numbers
 
in
 
short
 
intervals
 
and
 
related
problems,
 
Ann.
 
Inst.
 
Fourier
 
44
 
(1994)
 
307–322.
[6]
A.
 
Languasco,
 
A.
 
Zaccagnini,
 
Sums
 
of
 
many
 
primes,
 
J.
 
Number
 
Theory
 
132
 
(2012)
 
1265–1283.
[7]
A.
 
Languasco,
 
A.
 
Zaccagnini,
 
A
 
Cesàro
 
average
 
of
 
Hardy–Littlewood
 
numbers,
 
J.
 
Math.
 
Anal.
 
Appl.
401
 
(2013)
 
568–577.
[8]
A.
 
Languasco,
 
A.
 
Zaccagnini,
 
On
 
a
 
ternary
 
Diophantine
 
problem
 
with
 
mixed
 
powers
 
of
 
primes,
 
Acta
Arith.
 
159
 
(2013)
 
345–362.
[9]
A.
 
Languasco,
 
A.
 
Zaccagnini,
 
A
 
Cesàro
 
average
 
of
 
Goldbach
 
numbers,
 
Forum
 
Math.
 
27
 
(2015)
1945–1960.
[10]
P.S.
 
Laplace,
 
Théorie
 
Analytique
 
des
 
Probabilités,
 
Courcier,
 
1812.
[11]
M.
 
Leung,
 
M.
 
Liu,
 
On
 
generalized
 
quadratic
 
equations
 
in
 
three
 
prime
 
variables,
 
Monatsh.
 
Math.
115
 
(1993)
 
133–167.
[12]
H.
 
Li,
 
Sums
 
of
 
one
 
prime
 
and
 
two
 
prime
 
squares,
 
Acta
 
Arith.
 
134
 
(2008)
 
1–9.
[13]
Y.V.
 
Linnik,
 
A
 
new
 
proof
 
of
 
the
 
Goldbach–Vinogradow
 
theorem,
 
Rec.
 
Math.
 
N.S.
 
19 (61)
 
(1946)
3–8
 
(in
 
Russian).
[14]
Y.V.
 
Linnik,
 
Some
 
conditional
 
theorems
 
concerning
 
the
 
binary
 
Goldbach
 
problem,
 
Izv.
 
Akad.
 
Nauk
SSSR
 
Ser.
 
Mat.
 
16
 
(1952)
 
503–520
 
(in
 
Russian).
[15]
J.
 
Pintz,
 
The
 
Bounded
 
Gap
 
Conjecture
 
and
 
bounds
 
between
 
consecutive
 
Goldbach
 
numbers,
 
Acta
Arith.
 
155
 
(2012)
 
397–405.
[16]
G.J.
 
Rieger,
 
Über
 
die
 
Summe
 
aus
 
einem
 
Quadrat
 
und
 
einem
 
Primzahlquadrat,
 
J.
 
Reine
 
Angew.
Math.
 
231
 
(1968)
 
89–100.
[17]
W.
 
Schwarz,
 
Zur
 
Darstellung
 
von
 
Zahlen
 
durch
 
Summen
 
von
 
Primzahlpotenzen.
 
I.
 
Darstellung
hinreichend
 
grosser
 
Zahlen,
 
J.
 
Reine
 
Angew.
 
Math.
 
205
 
(1960/1961)
 
21–47.
[18]
M.
 
Wang,
 
On
 
the
 
sum
 
of
 
a
 
prime
 
and
 
two
 
prime
 
squares,
 
Acta
 
Math.
 
Sinica
 
(Chin.
 
Ser.)
 
47
 
(2004)
845–858.
[19]
M.
 
Wang,
 
X.
 
Meng,
 
The
 
exceptional
 
set
 
in
 
the
 
two
 
prime
 
squares
 
and
 
a
 
prime
 
problem,
 
Acta
 
Math.
Sin.
 
(Engl.
 
Ser.)
 
22
 
(2006)
 
1329–1342.
[20]
L.
 
Zhao,
 
The
 
additive
 
problem
 
with
 
one
 
prime
 
and
 
two
 
squares
 
of
 
primes,
 
J.
 
Number
 
Theory
 
135
(2014)
 
8–27.

Document Outline


Download 309,71 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish