Number Theory: Structures, Examples, and Problems


 Multiplicative Functions



Download 1,87 Mb.
Pdf ko'rish
bet51/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   47   48   49   50   51   52   53   54   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

6.1. Multiplicative Functions
109
hence
f

(
g

h
)
=
(
f

g
)

h
.
(2) We have


f
)(
n
)
=
d
|
n
ε(
d
)
f
n
d
=
f
(
n
),
and we get
ε

f
=
f

ε
=
f
.
Problem 6.1.2.
Let f be an arithmetic function. If f
(
1
)
=
0
, then there is a
unique arithmetic function g such that
f

g
=
ε.
Solution.
We show by induction on
n
that
(
f

g
)(
n
)
=
ε(
n
)
has a unique solution
g
(
1
), . . . ,
g
(
n
)
.
For
n
=
1, we have
f
(
1
)
g
(
1
)
=
1; hence
g
(
1
)
=
1
/
f
(
1
)
.
Suppose
n
>
1 and assume that
g
(
1
), . . . ,
g
(
n

1
)
have been uniquely deter-
mined such that
(
f

g
)(
k
)
=
ε(
k
)
holds for
k
=
1
,
2
, . . . ,
n

1. Then
f
(
1
)
g
(
n
)
+
d
|
n
d
>
1
f
(
d
)
g
n
d
=
0
,
and we get
g
(
n
)
= −
1
f
(
1
)
d
|
n
d
>
1
f
(
d
)
g
n
d
i.e., the function
g
exists and is unique.
Remark.
The unique function
g
satisfying
f

g
=
ε
, where
f
(
1
)
=
0, is called
the
convolution inverse
of
f
. It is not difficult to show that
μ
is the convolution
inverse to the constant function 1.
Problem 6.1.3.
If f and g are multiplicative, so is their convolution product.
Solution.
Let
h
=
f

g
. We have
h
(
mn
)
=
c
|
mn
f
(
c
)
g
mn
c
.
Set
c
=
ab
, where
a
|
m
and
b
|
n
. Since gcd
(
m
,
n
)
=
1, we can write
c
uniquely in this way. Hence we have
h
(
mn
)
=
a
|
m
b
|
n
f
(
ab
)
g
m
a
n
b
=
a
|
m
f
(
a
)
g
m
a
b
|
n
f
(
b
)
g
n
b
=
h
(
m
)
h
(
n
).


110
I Fundamentals, 6. Arithmetic Functions
Problem 6.1.4.
(1) If both g and f

g are multiplicative, then f is also multi-
plicative.
(2) If g is multiplicative, then so is its convolution inverse.
Solution.
(1) Suppose
f
is not multiplicative. Let
h
=
f

g
. Since
f
is not mul-
tiplicative, there exist
m
and
n
, gcd
(
m
,
n
)
=
1, such that
f
(
mn
)
=
f
(
m
)
f
(
n
)
.
We choose
mn
as small as possible. If
mn
=
1, then we get
f
(
1
)
=
f
(
1
)
f
(
1
)
,
so
f
(
1
)
=
1. Since
h
(
1
)
=
f
(
1
)
g
(
1
)
=
f
(
1
)
=
1,
h
is not multiplicative, a
contradiction. If
mn
>
1, we have
f
(
ab
)
=
f
(
a
)
f
(
b
)
for all
ab
<
mn
with
gcd
(
a
,
b
)
=
1. Now
h
(
mn
)
=
f
(
mn
)
g
(
1
)
+
a
|
m
b
|
n
f
(
ab
)
g
mn
ab
=
f
(
mn
)
+
a
|
m
b
|
n
ab
<
mn
f
(
a
)
f
(
b
)
g
m
a
g
n
b
=
f
(
mn
)

f
(
m
)
f
(
n
)
+
h
(
m
)
h
(
n
).
Since
f
(
mn
)
=
f
(
m
)
f
(
n
)
, we have
h
(
mn
)
=
h
(
m
)
h
(
n
)
. Therefore,
h
is not
multiplicative, a contradiction.
(2) Denote by
g

1
the convolution inverse of
g
. Then
ε
=
g

g

1
=
g

1

g
and
g
are both multiplicative. From the previous result it follows that
g

1
is
multiplicative.
Problem 6.1.5.
Let f be an arithmetic function that is not identically zero. Prove
that it is completely multiplicative if and only if f

f
=
f
τ
, where
τ(
n
)
is the
number of divisors of n.
(American Mathematical Monthly)
Solution.
If
f
is completely multiplicative, we have
(
f

f
)(
n
)
=
d
|
n
f
(
d
)
f
n
d
=
d
|
n
f
d
n
d
=
d
|
n
f
(
n
)
=
f
(
n
)
d
|
n
1
=
f
(
n
)τ(
n
)
=
(
f
τ)(
n
),
and the relation follows.
Conversely, take
n
=
1. We get
f
2
(
1
)
=
f
(
1
)τ(
1
)
=
f
(
1
)
. It follows that
f
(
1
)
=
0 or
f
(
1
)
=
1. Now suppose that
n

2 and let
n
=
p
α
1
1
· · ·
p
α
k
k
be the
prime factorization of
n
. Put
α(
n
)
=
α
1
+ · · · +
α
k
. It suffices to show that for any
positive integer
n

2, the following relation holds:
f
(
n
)
=
f
(
1
)
f
(
p
1
)
α
1
· · ·
f
(
p
k
)
α
k
.


6.1. Multiplicative Functions
111
We proceed by induction on
α
. If
α(
n
)
=
1, then
n
is a prime, say
n
=
p
, and
the property follows from the fact that
2
f
(
p
)
=
τ(
p
)
f
(
p
)
=
(
f

f
)(
p
)
=
f
(
1
)
f
(
p
)
+
f
(
p
)
f
(
1
)
=
2
f
(
1
)
f
(
p
).
Suppose then that the property holds for all
n
with
α(
n
)

k
. Take any
n
with
α(
n
)
=
k
+
1. Then
τ(
n
)
f
(
n
)
=
2
f
(
1
)
f
(
n
)
+
f
(
a
)
f
(
b
),
where the sum runs over all
a
,
b
with
ab
=
n
and 1
<
a
,
b
<
n
. It follows that
α(
a
)

k
,
α(
b
)

k
, and from the inductive assumption we get
τ(
n
)
f
(
n
)
=
2
f
(
1
)
f
(
n
)
+
(τ(
n
)

2
)
{
f
2
(
1
)
f
(
p
1
)
α
1
· · ·
f
(
p
k
)
α
k
}
.
Since
n
is not a prime, certainly
τ(
n
) >
2, and so for both
f
(
1
)
=
0 and
f
(
1
)
=
1, the desired result follows.
Additional Problems
Problem 6.1.6.
Let
f
be a function from the positive integers to the integers
satisfying
f
(
m
+
n
)

f
(
n
) (
mod
m
)
for all
m
,
n

1 (e.g., a polynomial with
integer coefficients). Let
g
(
n
)
be the number of values (including repetitions) of
f
(
1
),
f
(
2
), . . . ,
f
(
n
)
divisible by
n
, and let
h
(
n
)
be the number of these values
relatively prime to
n
. Show that
g
and
h
are multiplicative functions related by
h
(
n
)
=
n
d
|
n
μ(
d
)
g
(
d
)
d
=
n
k
j
=
1
1

g
(
p
j
)
p
j
,
where
n
=
p
α
1
1
· · ·
p
α
k
k
is the prime factorization of
n
.
(American Mathematical Monthly)
Problem 6.1.7.
Define
λ(
1
)
=
1, and if
n
=
p
α
1
1
· · ·
p
α
k
k
, define
λ(
n
)
=
(

1
)
α
1
+···+
α
k
.
(1) Show that
λ
is completely multiplicative.
(2) Prove that
d
|
n
λ(
d
)
=
1 if
n
is a square,
0 otherwise.
(3) Find the convolutive inverse of
λ
.


112

Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   47   48   49   50   51   52   53   54   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish