Number Theory: Structures, Examples, and Problems


 Floor Function and Integer Points



Download 1,87 Mb.
Pdf ko'rish
bet41/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   37   38   39   40   41   42   43   44   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

3.2. Floor Function and Integer Points
71
Then
N
1
=
N
2
; hence
n
(
N
1
)
=
n
(
N
2
)
and
a

k

b
(
f
(
k
)
+
1
)
=
n
(
N
1
)
+
n
(
N
3
),
c

k

d
(
f

1
(
k
)
+
1
)
=
n
(
N
2
)
+
n
(
N
4
),
n
(
N
3
)
=
(
b
+
1
− 
a
)
c
,
n
(
N
4
)
=
(
d
+
1
− 
c
)
a
.
It follows that
a

k

b
f
(
k
)

c

k

d
f

1
(
k
)
=
(
b
+
1
− 
a
)
c

1

(
d
+
1
− 
c
)
a

1

b
c

1
− 
d
a

1
.
Remark.
Combining the result in Theorem 3.2.3 and the relation (3) for the func-
tion
f
: [
0
,
n
] → [
0
,
m
]
,
f
(
x
)
= −
m
n
x
+
m
,
m

n
, yields, after some computa-
tion,
n
k
=
1
%
km
n
&
=
1
2
(
mn
+
m

n
+
gcd
(
m
,
n
)).
(
4
)
From the above relation we obtain
gcd
(
m
,
n
)
=
2
n

1
k
=
1
%
km
n
&
+
m
+
n
+
mn
,
the proof of which was a 1998 Taiwanese Mathematical Olympiad problem.
From here we get
n

1
k
=
1
km
n
=
n

1
k
=
1
km
n

n

1
k
=
1
%
km
n
&
=
m
n
·
(
n

1
)
n
2

1
2
(
mn

m

n
+
gcd
(
m
,
n
))
=
1
2
(
n

gcd
(
m
,
n
)),
which was a 1995 Japanese Mathematical Olympiad problem.
Problem 3.2.1.
Express
"
n
k
=
1

k
in terms of n and a


n
.
(1997 Korean Mathematical Olympiad)


72
I Fundamentals, 3. Floor Function and Fractional Part
Solution.
We apply Theorem 3.2.1 for the function
f
: [
1
,
n
] → [
1
,

n
]
,
f
(
x
)
=

x
. Because
n
(
G
f
)


n
, we have
n
k
=
1

k
+

n
k
=
1
k
2
− 

n
=
n

n
,
hence
n
k
=
1

k
=
(
n
+
1
)
a

a
(
a
+
1
)(
2
a
+
1
)
6
.
Problem 3.2.2.
Compute
S
n
=
n
(
n
+
1
)
2
k
=
1

1
+

1
+
8
k
2
.
Solution.
Consider the function
f
: [
1
,
n
] →
1
,
n
(
n
+
1
)
2
,
f
(
x
)
=
x
(
x
+
1
)
2
.
The function
f
is increasing and bijective. Note that
n
(
G
f
)
=
n
and
f

1
(
x
)
=

1
+

1
+
8
x
2
. Applying the formula in Theorem 3.2.1, we obtain
n
k
=
1
%
k
(
k
+
1
)
2
&
+
n
(
n
+
1
)
2
k
=
1
'

1
+

1
+
8
k
2
(

n
=
n
2
(
n
+
1
)
2
;
hence
n
(
n
+
1
)
2
k
=
1

1
+

1
+
8
k
2
=
n
2
(
n
+
1
)
2
+
n

1
2
n
k
=
1
k
(
k
+
1
)
=
n
2
(
n
+
1
)
2
+
n

n
(
n
+
1
)
4

n
(
n
+
1
)(
2
n
+
1
)
12
=
n
(
n
2
+
2
)
3
.
Additional Problems
Problem 3.2.3.
Prove that
n
k
=
1
'
n
2
k
2
(
=
n
2
k
=
1
%
n

k
&
for all integers
n

1
.


3.3. A Useful Result
73
Problem 3.2.4.
Let
θ
be a positive irrational number. Then, for any positive inte-
ger
m
,
m
k
=
1
k
θ
+
m
θ
k
=
1
%
k
θ
&
=
m
m
θ
.
Problem 3.2.5.
Let
p
and
q
be relatively prime positive integers and let
m
be a
real number such that 1

m
<
p
.
(1) If
s
=
#
mq
p
$
, then
m
k
=
1
%
kq
p
&
+
s
k
=
1
%
kp
q
&

m
s
.
(2) (Landau
2
) If
p
and
q
are odd, then
p

1
2
k
=
1
%
kq
p
&
+
q

1
2
k
=
1
%
kp
q
&
=
(
p

1
)(
q

1
)
4
.
3.3
A Useful Result
The following theorem is also helpful in proving some relations involving the
floor function.
Theorem 3.3.1.
Let p be an odd prime and let q be an integer that is not divisible
by p. If f
:
Z

+

R
is a function such that:
(i)
f
(
k
)
p
is not an integer, k
=
1
,
2
, . . . ,
p

1
;
(ii) f
(
k
)
+
f
(
p

k
)
is an integer divisible by p, k
=
1
,
2
, . . . ,
p

1
;
then
p

1
k
=
1
%
f
(
k
)
q
p
&
=
q
p
p

1
k
=
1
f
(
k
)

p

1
2
.
(
1
)
Proof.
From (ii) it follows that
q f
(
k
)
p
+
q f
(
p

k
)
p

Z
,
(
2
)
2
Edmond Georg Hermann Landau (1877–1838), German mathematician who gave the first sys-
tematic presentation of analytic number theory and wrote an important work on the theory of analytic
functions of a single variable.


74
I Fundamentals, 3. Floor Function and Fractional Part
and from (i) we obtain that
q f
(
k
)
p

Z
and
q f
(
p

k
)
p

Z
,
k
=
1
, . . . ,
p

1; hence
0
<
)
q f
(
k
)
p
*
+
)
q f
(
p

k
)
p
*
<
2
.
But from (2),
+
q f
(
k
)
p
,
+
+
q f
(
p

k
)
p
,

Z
; thus
)
q f
(
k
)
p
*
+
)
q f
(
p

k
)
p
*
=
1
,
k
=
1
, . . . ,
p

1
.
Summing up and dividing by 2 yields
p

1
k
=
1
)
q
p
f
(
k
)
*
=
p

1
2
.
It follows that
p

1
k
=
1
q
p
f
(
k
)

p

1
k
=
1
%
q
p
f
(
k
)
&
=
p

1
2
,
and the conclusion follows.
Problem 3.3.1.
Let p and q be two relatively prime integers. The following iden-
tity holds:
p

1
k
=
1
%
k
q
p
&
=
(
p

1
)(
q

1
)
2
(Gauss)
.
Solution.
The function
f
(
x
)
=
x
satisfies both (i) and (ii) in Theorem 3.3.1;
hence
p

1
k
=
1
%
k
q
p
&
=
q
p
(
p

1
)
p
2

p

1
2
,
and the desired relation follows.
Problem 3.3.2.
Let p be an odd prime. Prove that
p

1
k
=
1
'
k
3
p
(
=
(
p

2
)(
p

1
)(
p
+
1
)
4
.
(2002 German Mathematical Olympiad)
Solution.
The function
f
(
x
)
=
x
3
also satisfies conditions (i) and (ii); hence
p

1
k
=
1
%
k
3
q
p
&
=
q
p
·
(
p

1
)
2
p
2
4

p

1
2
=
(
p

1
)(
p
2
q

pq

2
)
4
.
For
q
=
1 the identity in our problem follows.



Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   37   38   39   40   41   42   43   44   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish