31.(2001-8.20). Agar x>0 bo`lsa, x
+
81
/
x
ning eng kichik qiymatini toping.
A) 30 B) 24 C) 6 D) 12 E) 18
## Koshi tengsizligidan foydalanib topamiz:
x
+
81
/
x
≥
2
x(81/ x)
=
2
⋅
9
=
18.
To’g’ri javob: E.
32.(2001-7.20)
x
y
x
y
+
=
+
=
⎧
⎨
⎪
⎩⎪
1
4
2
2
tenglamalar sistemasi nechta yechimga ega?
A) 1 B) 2 C) 4 D)
∅ E) to’g’ri javob keltirilmagan.
## Sistemaning birinchi tenglamasi bilan
markazi koordinatalar boshida va
diagonali 2 ga teng bo’lgan kvadrat,
ikkinchi tenglama bilan esa, markazi
koordinatalar boshida va diametri 4 ga
teng bo’lgan aylana berilgan. Bu ikki shakl kesishmaydi, shuning uchun
berilgan sistema yechimga ega emas. To’g’ri javob: D.
33.(2001-7.21).
x
2
+
5x
+
x + 5x - 5
2
=
17
tenglamaning ildizlari
ko’paytmasini toping.
A) 5 B) -5 C) 8 D) -8 E) -14
## Tenglamani quyidagicha qayta yozamiz:
x
2
+
5x-5
+
x + 5x - 5
2
-12
=
0.
So’ngra
x + 5x - 5
2
=
t
belgilsh kiritsak,
t
2
+
t-12
=
0
hosil bo’ladi. Bundan t
1
=
-4; t
2
=
3
larni topamiz.
O’rniga qo’ysak:
a) x + 5x - 5
2
=
-4 b) x + 5x - 5
2
=
3
Yechimi yo’q. x
2
+
5x-5
=
9
x
2
+
5x-14
=
0
Viyet teoremasiga ko’ra: x
1
⋅
x
2
=
-14
To’g’ri javob: E.
34.(2001-10.8). Nechta butun x va y sonlar jufti x
2
-y
2
=
31
tenglikni
qanoatlantiradi?
A)
∅ B) 1 C) 2 D) 3 E) 4
## ( x-y)( x
+
y
)
=31⋅1=-31⋅(-1) = -1⋅(-31) = 1⋅31
Bundan kelib chiqib, 4 ta holni qaraymiz:
1).
x
y
x
y
− =
+ =
⎧
⎨
⎩
31
1
2).
x
y
x
y
− = −
+ = −
⎧
⎨
⎩
31
1
3).
x
y
x
y
− = −
+ = −
⎧
⎨
⎩
1
31
4).
x
y
x
y
− =
+ =
⎧
⎨
⎩
1
31
(16;-15) (-16;15) (-16;-15) (16;15)
Demak, 4 ta juftlik. To`g`ri javob: E.
35.(2001-9.37). Yo`lovchi metroning harakatlanayotgan eskalatorida
to`xtab turib 56 sekundda, yurib esa 24 sekundda pastga tushadi. Yo`lovchi
to`xtab turgan eskalatorda xuddi shunday tezlik bilan yursa, necha
sekundda pastga tushadi.
A) 40 B) 42 C) 41 D) 44 E) 43
## 1 sekundda eskalator butun masofaning 1
/56 qismini,
harakatlanayotgan eskalatorda yurayotgan kishi esa 1
/24 qismini bosib
o’tadi. Bundan to’xtab turgan eskalatorda yurayotgan kishi 1 sekundda
butun masofaning 1
/24-1/56=1/42 qismini bosib o’tishi kelib chiqadi.
Demak, bu kishi to’xtab turgan eskalatorda 42 sekundda pastga tushadi.
To’g’ri javob: B.
36.(2001-12.24). (x
2
-2)
2
=5x
3
+
7x tenglamaning nechta manfiy ildizi bor?
A) 1 B) 2 C) 3 D) 4 E) manfiy ildizlari yo’q.
## x ning istalgan manfiy qiymatida tenglamaning chap qismi nomanfiy<
o’ng qismi esa manfiy son bo’ladi. Demak tenglamaning manfiy ildizlari
mavjud emas: To’g’ri javob E.
37.(1999-4.20).
(
)(
)
7
2
1
7
1
2
+
−
+ −
ni soddalashtiring.
A) 4
+2
2
B) 2-
2
C) 4-
2
D) 6
+2
2
E) 3
2
+2
7
##
(
)(
)
7
2
1
7
1
2
+
−
+ −
=
(
)(
)
7
2
1
7
2
1
+
−
−
−
(
)
(
)
=
=7-
(
)
2
1
−
2
=7-(2-2
2
+1)=4+2
2
. To’g’ri javob: A.
38.(1999-5.30).
8
2
5
3
7
2
4
cos
cos
cos
α
β
γ
−
+
ifodaning eng katta qiymatini toping.
A) 2,2 B) 2,3 C) 2,4 D) 2,5 E) 2,6
##
α, β, γ - lar o’zaro bog’liq bo’lmagani uchun cos2α=1; cos3β=-1;
cos4
γ=-1 deb olishimiz mumkin. Bunda ifoda eng katta 2,6 qiymatga
erishadi. To’g’ri javob: E.
39.(1999-8.29). Agar x
x
x
2
2
1
8
+
−
⎛
⎝⎜
⎞
⎠⎟
= bo`lsa,
x
x
2
1
−
ifodaning eng katta
qiymatini toping.
A) 4 B) 8 C) 2 D) 16 E) 1/4
## Koshi tengsizligidan foydalanamiz:
x
x
x
x
x
x
x
x
2
2
2
2
2
1
2
1
2
1
+
−
⎛
⎝⎜
⎞
⎠⎟
≥
⋅
−
⎛
⎝⎜
⎞
⎠⎟
=
−
.
Bundan
2
1
2
x
x
−
≤ 8;
x
x
2
1
−
≤ 4. To’g’ri javob: A.
40.(2002-6.29). f x
x
x
x
x
( )
=
−
+
−
+
2
2
4
8
4
5
funksiyaning qiymatlari sohasini
toping.
A) [1,6;5] B) [1,6;4] C) [1;4] D) (1;4] E) (0;5]
## Fuksiya formulasini quyidagicha qayta yozamiz:
f x
x
x
x
x
( )
=
−
+
−
+
2
2
4
8
4
5
=
x
x
x
x
x
2
2
2
4
5
3
4
5
1
3
2
1
−
+ +
−
+
= +
−
+
(
)
Ko’rinib turibdiki, x
=2 ikkinchi qo’shiluvchi eng katta 4 qiymatga
erishadi. Ikkinchi tomondan bu kasr x ning istalgan qiymatida musbat.
Shunday qilib, bu funksiyaning qiymatlari sohasi (1; 4] dan iborat.
To’g’ri javob: D.
41.(2002-3.16).
x
x
x
x
x
x
3
15
35
63
99
143
12
+
+
+
+
+
=
tenglamani yeching.
A) 26 B) 13 C) 18 D) 16 E) 24
## Tenglamani quyidagicha qayta yozamiz:
(
)
1
3
2
3
3
5
3
5
4
7
4
7
5
9
5
9
6
11
6
11
7
13
12
+ − + − + − + −
+
−
⋅ =
x
0 3
(
)
1
7
13
12
−
⋅ =
x
x
=26. To’g’ri javob: A.
42. (2002-7.41). (x
+
1)(x
+
2)(x
+
4)(x
+
5)
=40 Tenglamaning haqiqiy ildizlari
yig’indisini toping.
A) -6 B) 0 C) -5 D) 6 E) 7
## Quyidagi belgilashni kiritamiz: x
+
3
=t
Berilgan tenglama quyidagi ko`rinishni oladi:
(t-2)(t-1)(t
+
1)(t
+
2)
=40
(t
2
-1)(t
2
-4)
=40
t
4
-5t
2
-36
=0
Bikvadrat tenglamani yechib: a) t
2
=9; b) t
2
=-4
t
12
=
±
3. yechimi yo’q.
O’rniga qo’ysak: a) x
+
3
= -3 b) x
+
3
=3
x
1
= -6 x
2
=0
Bulardan x
1
+
x
2
=-6. To’g’ri javob: A.
43.(2002-1.59). log
log
2
3
2
2
3
0
x
x
−
≥ tengsizlikni yeching.
A) [16;
∞) B) {1}∪[16;∞) C) [8; ∞) D) {1}∪[9;∞) E) {1}∪[8;∞)
## Quyidagi belgilshni kiritamiz:
log
2
x
t
=
t
3
-3t
2
≥
0
t
2
(t-3)
≥
0
t=0, t
≥
3
o’rniga qo’ysak,
a) log
2
x
=
0, b) log
2
x
≥
3.
x= 1 x
≥
8
javob: {1}
∪[8;∞)
To’g’ri javob: E.
44.(2002-2.44). Muntazam to’rtburchakli kesik piramidaning diagonallari
o’zaro perpendikulyar va ularning har biri 8 ga teng. Piramidaning
balandligini toping. A
1
D
1
C
1
A) 4
2
B) 2
2
C) 4 D) 6 E) 3
2
o
## Piramidaning diagonal kesimini qaraymiz.
∆A
1
OC
1
teng yonli to’g’ri burchakli uchburchak
bo’lgani uchun
∆C
1
OD
1
ham teng yonli to’g’ri burchakli bo’ladi. Shu kabi
∆COD ham teng yonli to’g’ri burchakli uchburchak bo’ladi.
C
1
D
1
=D
1
O
=x, CD=DO=y deb belgilasak, H=x+y bo’ladi.
AA
1
C
1
C trapetsiyaning yuzini ikki usul bilan topib tengalymiz:
(2x
+2y)(x+y)/ 2=8
⋅
8
/2; (x+y)
2
=32; x+y=4
2
Bundan H
=4
2
. To’g’ri javob: A
45.(2002-2.60). y
=cos
4
x-2sin
2
x
+
7 funksiyaning eng kichik qiymatini
toping.
A) 5 B) 3 C) 2 D) 1 E) -5
## Formulani quyidagicha almashtiramiz:
y
=cos
4
x-2sin
2
x
+
7
=cos
4
x-2(1-cos
2
x)
+
7
= cos
4
x-2
+
2cos
2
x
+
7
=
=(cos
2
x
+
1)
2
+
4
≥
5. To’g’ri javob: A.
46.(2002-3.47). A(2;5) nuqtadan 4x-3y
+
1
=0 to’g’ri chiziqqacha bo’lgan
masofani aniqlang.
A) 1,2 B) 1 C) 1,4 D) 1,3 E) 0,8
## (x
o
;y
o
) nuqtadan ax
+
by
+
c
=0 to’g’ri chiziqqacha bo’lgan masofa
d
ax
by
c
a
b
o
o
=
+
+
+
2
2
formula bilan hisoblanadi.
d
=
⋅ − ⋅ +
+ −
= =
4 2
3 5 1
4
3
6
5
1 2
2
2
(
)
,
. To’g’ri javob: A. B
47.(2002-3.56). To’g’ri burchakli uchburchakka
ichki chizilgan aylananing markazidan
gipotenuzaning uchlarigacha bo’lgan masofalar O
5
va
10
ga teng.
Gipotenuzaning uzunligini toping. A C
A) 5 B) 0,5
50
C)
50
D) 6 E) 5,2
## Shakldan
∠AOB=180
o
-(0,5
∠A+0,5∠B)=180
o
-0,5(
∠A+∠B)= =180
o
-
0,5
⋅90
o
=135
o
.
∆AOB ga kosinuslar teoremasni qo’llab topamiz:
AB
=
10
5
2 10
5
1
2
+ −
⋅
⋅ −
(
/
)
=5. To’g’ri javob: A.
48.(2002-3.58). ABC uchburchakda medianalar kesishgan nuqtadan AB
tomonigacha bo’lgan masofa 1 ga teng. Agar AB
=8 bo’lsa, ABC
uchburchakning yuzini toping.
A) 12 B) 16 C) 9 D) 13 E) 10
## Uchburchakda medianalar kesishgan nuqtani- B
uchburchak uchlari bilan tutashtirilsa,
uchta tengdosh uchburchak hosil bo’ladi.
Berilgan uchburchakning yuzi shu O
uchburchaklardan istalgan biri yuzi- A C
ning uch baravariga teng bo’ladi.
S
ABC
=3S
AOB
=3⋅(0,5⋅8⋅1)=12. To’g’ri javob: A.
49.(2002-7.42) (x
2
+
3x
+
1)(x
2
+
3x-3)
≥
5 tengsizlikni yeching.
A)(-
∞;-4]∪[-2;-1]∪[1; ∞) B) (-∞;-4]∪[1; ∞)
C) (-4;-2]
∪[-1; ∞) D) (-2;-1] ∪[1; ∞)
E) (-
∞;-4]∪[-2;-1]
## Quyidagi belgilashni kiritamiz: x
2
+
3x
+
1
=t.
t
⋅
(t-4)
≥
5; t
2
-4t-5
≥
0; (t-5)(t
+
1)
≥
0
+ - +
-1 5
t
≤-1; t≥5.
a) x
2
+
3x
+
1
≤
-1 b) x
2
+
3x
+
1
≥
5
x
2
+
3x
+
2
≤
0 x
2
+
3x-4
≥
0
(x
+
1)(x
+
2)
≤
0 (x
+
4)(x-1)
≥
0
+
-
+
+
-
+
-2 -1 -4 1
[-2;-1] (-
∞;-4]∪[1;∞)
Umumiy yechim: (-
∞;-4]∪[-2;-1]∪[1;∞)
To’g’ri javob: A.
50.(2002-10.28). y
=x
x
funksiyaning hosilasini toping.
A) x
x
(1
+
lnx) B) x
x-1
(1
+
lnx)
/
lnx C) x
x
D) x
x
lnx E) x
x-1
## Formulani asosiy logarifmik ayniyatdan foydalanib, quyidagicha
almashtiramiz: y
=
x
x
=
(e
lnx
)
x
=
e
xlnx
.
Murakkab funksiya hosilasini topish formulasini qo’llab topamiz:
y’
=
e
xlnx
⋅
(lnx
+
x
⋅
(1
/
x))
=
x
x
(lnx
+
1). To’g’ri javob: A.
51(2002-1.57). 1
+x-x
2
=
⎢x
3
⎢ tenglama nechta haqiqiy
ildizga ega?
A) 1 B) 2 C) 3 D) 4 E) Yechimi yo’q.
## y=-x
2
+x+1 va y= ⎢x
3
⎢ funksiyalarning grafiklarini
qaraymiz.
Ular ikkita nuqtada kesishadi.
Demak, berilgan tenglama 2 ta ildizga ega.
To’g’ri javob: B.
52(2002-1.62). cos(sinx)<0 tengsizlikni yechig.
A) (
π
π
π
π
2
2
3
2
2
+
+
n
n
;
), n
∈
Z B) (
π π π π
2
3
2
+
+
n
n
;
), n
∈
Z
C) ( 0
3
2
2
;
π
π
+ n ), n
∈
Z D) ( 0
3
2
;
π
), n
∈
Z E) yechimi yo’q
0> Do'stlaringiz bilan baham: |